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Abstract of the Dissertation

M O D E L IN G  T H E  P E N A L T Y  COSTS 

OF SO FTW ARE FA ILU RE

by

Michael Allan Friedman

Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 1986 

Nancy G. Leveson, Chair

An improved software reliability modeling technique is presented that takes 
into account the penalty costs of software failures. “Penalty cost” is a quantification 
of the undesirable consequences of the failure, sometimes called a “severity rating.” 
Mathematically the model is developed as a compound stochastic process with  
failure frequency and severity components. The main purpose of the technique is 
to probabilistically characterize the aggregate penalty cost to be incurred over a 
future time interval. Numerical techniques for facilitating calculations are provided, 
with special emphasis on two major classes of programs: “robust” programs and 
those w ith lattice penalty cost distributions. Use of the modeling technique is 
demonstrated with NASA space shuttle data. The relationship between accuracy 
and sample size is investigated.
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CHAPTER 1 

INTRODUCTION

Background

Reliability is a major consideration in the planning, design and operation of 

today’s large, intricate hardware-software systems. It  is especially important when 

computers lie at the heart of critical or vital real-time applications. Computer 

science, as a maturing discipline, is following the age-old trend of replacing art by 

science, and scientific method requires quantification as its first step. When soft

ware reliability is defined quantitatively, it can be specified, analyzed, measured and 

modeled. Informally, software reliability is the probability that a computer program 

will operate successfully for a specified period of time, under stated environmental 

conditions. Successful operation means that output (displays, hardcopies, com

mands, control, etc.) does not deviate beyond specified tolerances. Failure of the 

software may result in an unintended system state or course of action. A loss event 

could ensue in which property is damaged or destroyed, people are injured or killed, 

monetary costs are incurred. A quantitative measure of the loss is called the penalty 

cost of that failure.

Software reliability assessment, part of the broader area of software qual

ity assessment[MoHA73], is still in its embryonic stages. In the early seventies, 

IB M ’s admission[HOPK70] that each release of its OS/360-370 operating systems 

contained over 1,000 faults ( “bugs” ) shocked many people. Ironically, a follow-up 

study of error logs showed that the number was usually closer to 11,000[G ILB74]. 

For persons newly acquainted w ith computer systems,

1
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“[i]t is indeed a surprising thing to discover that products called software, created by 
reputable companies and sold or rented— for a reasonable or unreasonable price w ill 
inevitably contain, not just a few errors, but masses of them [GlLB74j.”

As a practical matter, 100% reliability is unattainable; most software re

liability models suggest that the effort to uncover each succeeding fault grows 

exponentially. And even if sufficient debugging resources were available, it is prob

lematical to ascertain whether 100% reliability has in fact been achieved, since the 

two known ways of showing the absence of faults are exhaustive testing and formal 

verification. Exhaustive testing, whether functional (all possible input streams) 

or structural (all possible program paths), gives rise to a combinatorial explosion 

of cases. Formal verification of sizable real-time systems is likewise not currently 

within the realm of feasibility.

Given, then, that computer programs will contain faults, the practical goal of 

software development must be to achieve a high degree of software reliability that 

leaves an acceptable level of risk of software failure. “Acceptable level presupposes 

that software reliability can be communicated and assessed. To communicate 

about software reliability requires agreed-upon figures of merit, and assessment of 

software reliability requires demonstrably valid techniques for obtaining the values 

of these metrics. Current techniques are designed to serve three principal functions 

[HECH77]:

1. Measurement— evaluation of a program’s reliability as it executes in its 

actual operating environment.

2. Estimation— extrapolation from a program’s failure history in a test envi

ronment.

3. Prediction— correlation of static program characteristics to failure behavior.

Once a reliability goal is established, reliability models can be employed to 

assist project management in planning to achieve that goal. For example, models
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can help determine the resources required to meet the goal, and inform when it has 

been achieved. Considered more broadly, software reliability is not only a measure 

of system effectiveness but also bears on the total cost of system acquisition and 

ownership throughout the life cycle. Building-in greater reliability generally costs 

more up front but can save maintenance and penalty costs later down the line. 

Software reliability analysis provides information to allow tradeoffs to be made 

with other product characteristics and can help evaluate the effects of competing 

software development technologies.

Sound software engineering practices can go a long way in hindering the intro

duction of faults into the software. Unfortunately, advances in software development 

technology have lagged behind the advances in computer hardware that permit the 

construction of systems of great size and complexity. It  has been suggested that 

the use of fault tolerance techniques might allow critical systems to recover from 

software failures in real time[KlM84].

Anecdotal news accounts of lost space probes, false m ilitary alerts, and persis

tent overbillings have pointed up the computer’s knack for amplifying human error. 

During the late ’60s, problems with software reliability were diagnosed as a symp

tom of a pervasive “software crisis” [DIJK68]. Software reliability has recently been 

thrust into the public eye when it was named as the Achilles’ heel in the realization 

of proposed comprehensive strategic defense systems[LIN85].  The trends of more 

and more computing power per dollar, and greater and greater miniaturization, 

have resulted in ever-increasing application-areas for computers. Modern society 

is letting itself become dependent on computers in important areas like national 

defense, transportation, energy, medicine, law, finance and manufacturing. As 

computers are given more and more “responsibility,” they are put into positions 

where incorrect operation can result in significant consequences. Computers by 

themselves can do no harm, but when they are embedded in systems their output 

is endowed with the power to inform or materially affect the real world. Examples:
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1.) Physical systems: Misdirected mechanical, chemical, electromagnetic, ther

modynamic, nuclear and other energies can result in damage to property 

and living organisms. Transportation, power utilities, manufacturing and 

weapons systems especially can involve powerful energies.

2.) Biological systems: Failure of lifesaving or life-support systems may result 

in immediate loss of life or limb. Failure in medical information systems and 

test equipment can more subtly endanger life and health. Computers can 

form a crucial part of artificial organs, prosthetic and other “bionic” devices.

3.) Commercial systems: Computers failing in accounting, banking, billing, 

financial analysis, management information, market research systems, and 

so on, could result in monetary loss to firms and individuals.

In summary, when computers are entrusted with the “power” or “authority” to 

perform useful work, the potential for serious undesired consequences exists should 

software failure occur.

Statement of the Problem
Something is missing in current software reliability models. They merely 

count software failures and do not take into account the differing severities of the 

failures. However, as Goodenough[GoOD79] and others have pointed out, software 

reliability must concern itself w ith  both the frequency and severity of software 

failure. Presently, “An error in the tenth digit of a calculation is judged as harshly 

as a crash-causing bug[BEIZ84].” Failure can cause effects ranging from  aesthetic 

affront or minor irritation  to grave effects on the system and its environm ent. 

Even where loss is purely financial, penalty cost inform ation might allow software 

engineers to relate system quality to economics and capital investment.

W hat is needed, then, is a new, expanded type of software reliability model 

that can weight software failures according to the magnitudes of their undesired



www.manaraa.com

consequences. Such a model would be capable of probabilistically characterizing 

the aggregate penalty cost to be incurred in a future time interval.

Software reliability, as currently measured, is independent of software safety. 

However, incorporating failure severities can help unite these two areas[LEVE82].

Method of Research
The theoretical basis of the modeling technique comes from modern proba

bility  calculus, especially the theory of random functions. The theory of random  

functions has advanced rapidly since the pioneering work of Kolm ogorov[KOLM31] 

and Feller[FELL36]. The subject is systematically treated in [C H U N 60],[D ooB 53], 

[FELL57, FELL66] and [HARR63]. Random  functions (stochastic processes and 

random sequences) have been shown to be of great unifying power and have been 

applied in many diverse areas. By viewing the phenomenon of software failure 

in this context and carefully delineating assumptions, a family of models was de

veloped that includes existing software reliability  models as special cases. This  

fam ily of models improves upon those existing models by taking into account the 

consequences of software failure.

Contributions to the Field
The research described in this work has contributed to the field of software 

reliability by providing a new modeling technique that extends the province of 

software reliability models to include penalty costs. Before this technique was 

developed, software reliability models could only deal with the frequency of failures. 

One of the major criticisms of the existing models has been their inability to 

distinguish among failures w ith differing degrees of severity of consequence.

A nice feature of the technique is that it is compatible with existing software 

reliability models and serves to enhance their utility. The technique models the 

phenomena of software failure in a more comprehensive way than the others because
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of the additional dimension of penalty cost. Methods for measuring and predicting 

software reliability, such as this one, are useful to several software development 

rolep layers:

Software engineering researchers can use the methods to demonstrate the 

effectiveness and efficiency of proposed software development technologies. The 

reliability growth to be realized from the techniques can be studied and compared 

with competing technologies.

Project managers can use measurement and prediction methods to get a 

handle on when reliability goals will be met and what additional effort needs to 

be expended to meet those goals. The managers can use the researchers’ results to 

help decide whether and how extensively to deploy competing software development 

technologies in pursuit of the goals.

A procuring organization can state in a requirements specification or contract 

a maximum acceptable yearly aggregate penalty cost or similar metric, and the 

developing organization will be able to the software has indeed met the required 

level of reliability.

Users can evaluate the penalty-cost reliability of operational systems. Total 

life-cycle costs of a piece of software can be predicted more accurately by including 

penalty cost estimates.

Systems safety personnel can use penalty-cost predictions to help decide when 

software is sufficiently safe to be released.

Synopsis of the Dissertation
After covering some preliminary definitions, concepts and results from prob

ability and reliability theory, the dissertation surveys the literature relating to 

software reliability modeling. Here the main software reliability models are chron

icled and compared, culminating in an assessment of the state of the art. The 

succeeding chapter begins by technically summarizing the main features of the
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model and its principal formulae. Then the new modeling technique is carefully 

developed from a brief series of reasonable assumptions about failure occurrence 

and severity. Concepts from modern probability calculus and the theory of random 

functions are employed. A Bayesian technique for updating the failure rate is pre

sented along with an example using real project data. Variants of the basic model 

are discussed. Convenient numerical techniques are covered for some major classes 

of computer programs. An example is given using failure data from a ‘ robust 

program. The use of auxiliary functions as a way of simplifying computations is 

discussed. An application of the modeling technique is demonstrated using failure 

data from NASA space shuttle software. The relation between sample size and 

accuracy of the technique is analyzed.

The main body of the dissertation ends with a summary, a discussion of 

conclusions, and suggestions for future research. In the appendices appear the raw 

data for all the examples, and detailed results from the space shuttle example. 

Illustrations appear throughout the dissertation to assist in visualizing the main 

ideas.
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CHAPTER 2 

PRELIMINARY CONCEPTS

Software reliability modeling techniques are grounded in probability calculus 

and reliability theory. It  will be helpful to review the basic definitions and notions 

that will be drawn upon in the remainder of this work.

Probability Concepts
A statistical experiment can be real or purely conceptual and is one in which “a 

complex natural background leads to a chance outcome [H a s t 7 5].” A fundamental 

concept is that of a probability space, denoted by the triple The proba

bility space serves to specify the basic objects on which probability calculations will 

be performed. The first component is the sample space fi, which consists of the 

collectively exhaustive and mutually exclusive outcomes cu of the experiment. The 

second component is a <7-field I — a nonempty collection of subsets (events) that is 

closed under the operations of complement, union, and infinite union. The third  

component is a probability measure P that maps each event into the unit interval.

In  this work, intervals on the real line will be specified by means of the 

following notational conventions: For real numbers a and b w ith a <  b,

(a,b) =  {z|o  <  i  <  6};

[a,b\ =  {x\a < x < b } - ,

(a,b] =  {z|o  <  z <  6};

[a,f>) =  {x\a <  x <  b}.

8
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Thus, a parenthesis indicates that the endpoint is to be excluded from the interval, 

and a square bracket indicates that it is to be included. The “unit interval” would 

be notated [0,1].

The function P must be such that

1) P (n ) =  1 (standardization),

2) if A i, A2 , . . .  are disjoint events, then f  (UfA,) =  P( Ai )  (additivity), and

3) 0 <  P{A)  <  1 (nonnegativity).

The notation P r{B } means P( { oj E f2 : B  holds}).

Random Variables

A random variable X(w) is a real-valued function defined over the sample 

space fî with the proviso that for every real number x, the set (tv : X(w) <  1 } E 

I t  is customary in most contexts to suppress the functional form and simply refer 

to the random variable as X. In this work random variables will appear in boldface. 

Informally, a random variable can be understood as a numerical representation of 

the outcome of the statistical experiment.

Conditional Probabilities

The notation P ( Y \ X )  denotes the probability of the event Y  given that the 

event X  has occurred and satisfies

n v m - ^ p .
Two events are said to be statistically independent ( “s-independent” ) if P ( X r \ Y )  =  

P ( X ) - P ( Y ) .

Probability Distributions

The probability distribution of a random variable X  is usually represented by 

its cumulative distribution function (Cdf)

C d f{X } =  F( x)  =  P r{X  <  x}.
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It  gives the probability that X  will not exceed the value x. The form with the

random variable in curly braces is the official IE E E  notation for the function. The

function exhibits these basic properties:

1) It is nondecreasing,

2) limz_*-oo F(x)  =  j F ( - o o )  — 0,

3) lima;-»+oo F[x)  — F (+oo) =  1,

4) F (x ) is continuous from the right: limz- ^  F (x ) =  F(xo), x >  xq.

Alternatively, if X  is a discrete random variable (can only take on a countable 

set of values), it can be represented by its probability mass function (pmf)

p m f{X } =  px =  P r{X  =  x}.

Events having nonzero probabilities are represented as points. (In this case F(x)  

is a step function.) Figure 1 shows the probability mass function and cumulative 

distribution function of a typical discrete random variable. If  X is continuous (can 

take on any real number in an interval), it can be represented by its probability 

density function (pdf)

pdf{ X }  ,  / ( , )  ,  a Um+ P r( * < * A< * + * f>  =  « 1 ,

where this derivative exists. The pdf exhibits these fundamental properties:

1) It  is nonnegative: f (x )  >  0.

2) The total probability is unity: f ( x ) d x  =  1.

3) The definite integral gives probabilities: P r{a  <  X  <  6} =  / a f (x )  di.[E ither 

or both inequalities can be strict ( “< ”) since the probabilities at single points 

are zero.]

Events are represented as sets of intervals on the real line. Figure 2 shows 

the probability density function and cumulative distribution function of a typical
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continuous random variable. The pdf, pmf and Cdf should be presumed zero for 

unstated values of their arguments.

Descriptive Statistics

The s-expected value (also called the expectation or mean) of a continuous 

random variable X  is defined to be

if \x\ f (x)  dx <  oo. This corresponds to the center of gravity of the distribution. 

When X is discrete, the s-expected value is

center of gravity. The standard deviation is the square root of the variance. More 

generally, the moments about the origin are

E W  =

if E i  I Si I P r{X  =  St) <  OO.

The variance is defined to be

V a r{X } =  E {[X  -  E{X>12} =  E {X 2} -  [E {X }]2.

It gives a measure of dispersion— how concentrated the distribution is about the

and the moments about the mean are

pr =  E {(X  -  /z)r } , r =  l , 2 , . . . .

The median is the “middlemost value,” that value of M  for which
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The mode is a “most likely value”— a value of x for which

14

df ( x ) _ g 
dx ’ dx2 '

Some distributions may have more than one mode.

Random Functions

A random function X  =  {X(t,cv); t G T , uj G f î}  is a family of random vari

ables defined on the same probability space and parameterized by an independent 

deterministic variable t that takes on values from an index set T . I f  the indexing 

parameter t varies along a continuum, X is termed a stochastic process; if t can 

take on only discrete values, X is called a random sequence. The values that a par

ticular random variable X (î, w) can assume comprise the state space of the random 

function. When the index set T  is the real line Æ and is thought of as “time,” 

random functions can be used to describe systems that evolve in time according 

to probabilistic laws. For each fixed t E T , X (t, w) will be a real-valued random 

variable that is a function of w. Contrarily, for each fixed tv G fî, X (i,w ) will be 

a function of time called a realization of the random function. The set of all such 

time functions is called the ensemble of the random function.

Etymologically, the word stochastic comes from the Greek o ro x à ç ^ d a i, 

meaning “to shoot with a bow at a target.” The picture is this: The trajectories 

of the arrows are at least partially random, and some will achieve the preferred 

outcome (hit the target). To abstract, there are 1) a stream of events that is 

not exactly predictable (has a random component) and 2) a nonrandom selection 

process that classifies the outcomes [B ATE79 ].
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Convolution

Let Z =  X  +  Y, where X , Y, and Z are defined on the same probability space. 

The pdf of Z can be computed from the pdf’s of X and Y by

fz{z )  =  f x {x )  * /V (y )

/ CO

f x { z  ~  y ) f Y { y )  dy

-oo
TOO

= / f x [ x ) f Y { z - x ) d x ,
J — OO

where is called the convolution operator.

Laplace Transform

The mathematical constant

/ V ne =  lira 1 +  -  =  2.7182818 . . .
n—»oo y n )

is the base of the system of natural logarithms. The exponential function f ( x )  =  ex 

has a growth rate that at any point is directly proportional to the function’s 

magnitude. To enhance readability the notational variant “exp(x)” will be employed 

in this work.

The real function f [x )  is said to be Laplace transformable provided that the 

integral
rO O

I  |/(x )|e x p (-fc x ) dx
Jo

converges for some real k. The Laplace transform of f (x )  is defined as

rO O

L r{ f ( x ) } =  exp(—rx) f (x )  dx, 
Jo

where r  is a complex variable. To recover / (x ) ,  the inverse Laplace transform 

(inversion integral) is used:

i z-c+ioo
f {x)  =  —  /  exp (rx )£r{ / ( x ) }  dr,

* ^ 1  J c —too
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where i  =  a/^T- The convolution of the pdf’s of two nonnegative random variables 

X and Y can be easily computed by

/z(z) = Z z i U f x W U M y ) } } ,   ̂> 0

where is the inverse Laplace transform operator[CooK81].

Gamma Function

Several probability laws that will be discussed in this paper make use of the 

widely tabulated “complete gamma function” defined by

fO O

r(n) =  I  æn-1 e x p (-x ) dx. 
Jo

It  has these properties:

1.) r(o) = 1,
2.) r(l/2) = y/ÎT, and

3.) F(n) =  (n — l)r(n — 1).

If n is an integer, F(n) =  (n — 1)!.

Reliability Concepts
In reliability studies, the fundamental variable concerning an individual is a 

binary variable representing either survival or failure. ( “Individual” in a techno

logical context generally refers a man-made system or component, but reliability 

theory is also often applied in studies of the mortality of living organisms, where it 

masquerades as part of actuarial science or biometrics.) Generally one is interested 

in the proportion of survival within groups of individuals under given conditions. 

Proportions are productively represented in terms of probabilities, for then the 

highly developed concepts and methodologies of probability theory can be mus

tered.
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Since the useful operating time of a system cannot be predicted exactly, one 

can only state what the probability is that the system will not fail prior to a specified 

time t. Let the continuous random variable T  represent the time-to-failure of a 

system. C d f{T }  gives the probability of failure by time t, i.e.,

C df{T> =  P r{T  < t } =  [  f {u)  du.
Jo

Often it will be more natural or convenient to work with the function complemen

tary to C d f{T }: The survivor or reliability function[C0X62j

S f{T } =  R(t) =  P r{T  > 0  =  1 -  Cdf{T>

gives the probability that the system will operate without failure for at least the time 

interval (0,t], Figure 3 shows the areas representing the cumulative distribution 

function F( t )  and the reliability function R(t)  for a typical time-to-failure pdf. 

The system is assumed to be operable at time t =  0; thus J2(0) =  1. Eventually 

the system is presumed to fail: i2(oo) =  0. Between these two extremes, R(t)  is 

a monotone nonincreasing function of t. For negative values of t, R(t)  =  1 for 

convenience, but negative time is meaningless. The first and most basic task of 

reliability theory is to derive and investigate the reliability function.

The hazard rate function is the conditional rate of failures per unit time, given 

that the system has survived to at least time t. Mathematically, the hazard rate 

is expressed as the limit of the ratio of the conditional probability of failure during 

the next small increment of time, given that a failure has not occurred, and the 

length of that time increment, as the length approaches zero:

h , { T }  ,  , i m  M ' < T < ,  +  A , | T > , }

At—»0+ At

In reliability modeling, this function is usually called the (conditional) failure rate 

and is traditionally symbolized as X(t). Note that A(t) is not a pdf since
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Any positive function A(x) for which

lim f  X(x) dx
t-oo J0

is unbounded can be used as a failure rate[MURT72], The average failure rate is 

defined as
T failures
A =  — --------,

time

the simple ratio of failures over time. The average failure rate over an infinitesimally 

small unit of time is just the instantaneous failure rate A(t). It is possible to define 

the failure acceleration, etc. using higher-order derivatives. Figure 4 shows the 

typical hazard rate through time for a hardware component or system. The first 

phase is the infant mortality phenomenon; the second phase is the period when the 

main peril is random stresses; and the final phase is the wearout period.

Failure time distributions can be broken into intervals of decreasing failure rate 

(D FR ), increasing failure rate (IFR ), and constant failure rate (CFR ). Note that 

is the unconditional probability that failure will occur in the time interval 

(t , t  +  At], and A (t)A t is the conditional probability that a system surviving to age 

t will fail in the interval (t, t +  At]. The distinction can be illustrated by considering 

a newborn baby. The probability that it will die between ages 107 and 107.5 is very 

small, but the probability that it will die between those ages, given that it has lived 

to age 107, is appreciably higher.

The hazard rate, probability density function and cumulative distribution 

function of T  each uniquely determine the other two functions. Letting the cumu

lative hazard function

H R { T } =  /  X(x) dx,
Jo

the following identities hold for t >  0: S f{T } =  exp(—H R {T } ), p d f{T }  =  

h r{T } exp( - H R { T } ) , and hr{T> =  p d f{T } /S f{T > . The probability density func

tion, the cumulative distribution function and the failure rate are thus completely
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equivalent mathematically. The choice of which to use when is a question of con

venience.

The mean time to failure (M T T F ) is the s-expected value of T:

f  oo
E { T }  =  I  tp d f{T }

Jo
M T T F

If  limt- , 0 0  tjR(t) =  0, then it can be shown through integration by parts that

For nonredundant systems, the M T T F  can be easily estimated by dividing the time 

during which the system is operational by the number of reported failures.

The reliability of a given component or system is usually unknown until failure 

data is collected in accordance with a sampling scheme.

Combinatorial Reliability

When k components are connected in series, the total reliability is given by

Had these components been connected in parallel, the total reliability would be 

given by

Figure 5 shows block diagrams of the basic parallel and series system configurations.

Software Reliability Concepts
Consider the case where the system under consideration is a running computer 

program. The program will purport to achieve some desired mapping from an input 

space to an output space. This desired mapping may fail to be realized on certain 

input cases because the program is in some sense an imperfect realization of that

M T T F

R(t) =  1 — [1 -  i2 i(t)][l — R2 (t)] • ■ • [1 — -Rjfc(t)]-
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mapping. Suppose that a test oracle is available that will tell for any input case 

whether the program will fail to achieve its intended function. Let the oracle’s 

answer be expressed by the binary function e, whereby e(i) =  0 indicates success 

and e(t) =  1 indicates failure for input case i.

The input cases are presumed distributed in such a way that p(i)  is the 

probability of case i being presented as input to the program. Since p(-) is a 

pmf, it must be the case that =  1.

The probability of a software failure on a single run is then

A„ =  ]T e ( î)p ( î) .
t

I f  r is the number of input cases the program is presented with per unit time, then 

the failure rate will be given by Anr [KOPE79]. The sample space for the experiment 

is the set of all possible operational scenarios.

A fault is an error or omission in the specification, design or coding of a 

computer program. Figure 6, based on a study described in[RAMA84], shows a 

breakdown of common fault sources. (The meanings of nomenclature like error, 

fault, mistake, defect, etc. differ widely in the literature. Some authors distinguish 

between the human action causing a fault and its manifestation.) A software failure 

is an unacceptable deviation from a program’s expected behavior, attributable to a 

fault. Note that the “expected behavior” of the program is something in the user’s 

head; the requirements specification that he agreed to may be wrong, or may have 

been misinterpreted by the development organization. A troublesome problem: 

There may be no reliable reference for the correct behavior. “More likely, we have 

the program result and another result that may be as error-prone as the program 

result ([e.g.,] a hand calculation) [L e a t83].” On the other hand, “if the results of 

all processes have to be known beforehand, there would hardly be any purpose in 

writing a computer program. [WIRT73].” The reliable-reference problem has been 

circumvented in software reliability theory by assuming the existence of the test
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oracle, but certainly has practical implications. Defining a failure as a deviation 

from the program specification can lead to the reductio ad absurdum quipped by 

Gilb:

“After all, [a failure) is only [a failure] in relation to the program documentation. This 
is a well-known trick for increasing reliability—no documentation—who can complain 
when they have no description of the system’s capabilities[ GILB74] ?"

A software failure can result from either a conformance deviation or a perfor

mance deviation. Conformance deviation results when the output itself is erroneous. 

Performance deviation results when the program produces the correct answer or 

response but expends too many resources (typically time) in doing so.

The behavior will be manifest in the program’s output, in the form of visual 

displays, printed hardcopies, control of and commands to peripheral devices, and so 

on. During testing, additional output such as dumps and traces might be forced, in 

order to provide more insight into the program’s operation. The output is examined 

to determine if it lies within some acceptable tolerance of the requirements. The 

determination that a failure has occurred implies the detection of a fault. A 

diagnostic procedure then ensues to find the fault. While in a nontechnical sense 

the word fault has the connotation of a minor, isolated flaw, in actuality anywhere 

from one to perhaps thousands of lines of code might be implicated. The earlier in 

the life cycle that the error originated, the more lines of code that generally will be 

affected.

Failures in a computer system traditionally fall into the categories of software 

failures, hardware failures, and “liveware” failures (operator error). I t  is easy to 

come up with situations, for instance firmware (program or microprogram code 

burned into R O M  [read-only memory]), where the distinctions could become hazy. 

More on the relation between software and hardware failure modes appears later in 

this chapter.



www.manaraa.com

Un
de

rs
ta

nd
in

g
R

eq
ui

re
m

en
t

LU
5
Q.■g-
LU
5
O

06 LU
O

O  <

II
N
LU£C3C9

o £  
■E E
S eII

O)
03

CL
AS

SI
C 

SO
FT

W
AR

E 
LIF

E 
CY

CL
E 

M
O

D
EL



www.manaraa.com

27

The penalty cost of an individual software failure is a quantification of the 

undesired consequences of that failure. The aggregate penalty cost over a time 

interval is the sum of the penalty costs arising from every software failure that 

occurred during that interval.

For software, M T T F  is a controversial measure, since if there is a nonzero 

probability of no faults in the software, the M T T F  will be infinite[LlTT75B]. (Most 

hardware, at least, will eventually wear out.) M T T F  is “the cornerstone of current 

reliability theory; it is specified, predicted and demonstrated [GOLD 8 1],” but its 

theoretical difficulty has prompted a move toward the use of positional measures 

such as percentiles. The value TJ such that P r{T  <  7^} =  .Oil is called the ith  

percentile of the time-to-failure distribution. The value t =  Tso is the median time 

to failure.

Figure 7 (after [R a m a 84]) shows the classic software life cycle model, which 

is generally assumed for the software reliability models discussed here. The re

quirements phase begins with an analysis of what the system is to accomplish 

and culminates in a specification document that expresses the desired behavioral 

attributes of the program from a nonprocedural viewpoint. It is in this phase that 

performance and reliability goals are generally set. The specification will serve as 

somewhat of a contract between the procuring and developing organizations. In  

the design phase the solution is devised and organized. The architectural frame

work of the software is established by allocating the functionality among modules 

whose interfaces are well defined. In the final stages of the design the procedural 

detail is fleshed out using graphical, tabular and textual tools. In  the coding phase 

the algorithms and data structures are implemented in a programming language 

appropriate for the target machine.

In the test phase each module is first tested as a unit, and then the modules are 

synthesized into subsystems, which are further integrated into the whole hardware- 

software system. I t  is in this integration testing stage that failures can be recorded
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for fitting to time-domain software reliability models. The final stage of testing 

is validation testing, during which the system’s behavior is compared with the 

expectations of the requirements specification. The software may be sent out to a 

separate organization for independent verification and validation ( IV & V ).

At some point the software will be deemed acceptable by the customer and 

go into operational use. During this maintenance phase software failures may still 

occur, some of which may result in downtime. The failure times here in this phase 

are termed retrospective failure data. Often the software will need to be adapted to 

new environments (e.g., operating system releases, updated hardware). The end- 

user may request enhancements once he has had some experience w ith the software. 

Some of this maintenance activity may result in recursions of the full life cycle.

Phase completions (milestones) are marked by formal incremental reviews and 

the delivery of formalized products (baselines).

It  is important to distinguish between two kinds of time considered in software 

reliability modeling. Debugging time (r) occurs prior to the release of a version of 

a program. During this testing phase, the program is run until a software failure 

occurs. Then the program is modified in an attempt to repair the fault causing the 

failure. In some models the repair is assumed to take place immediately. In other 

models, fault isolation and correction activities occur concurrently with further 

test runs. In models with perfect debugging, faults are isolated and corrected 

instantaneously. In  models with imperfect debugging, repair activity may fail to 

repair the fault and may even generate new faults.

Eventually, testing ceases and the latest program version is released. Cumu

lative operating time in the operational environment is denoted t and is what is 

used in expressing reliability.
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The availability A(t)  is the probability that the system is operational at time 

t. The mean time between failures (M T B F ) is equal to

M T B F  =  M T T F  +  M T T R ,

where M T T R  is mean time to repair. The steady state availability is defined as

A  =  lim A(t),t—>00

which can be approximated by

uptime M T T F
A = uptime +  downtime M T T F  +  M T T R

The difference between R{t)  and A(t)  can be clarified this way: R{t)  is the proba

bility that no failures occur prior to time t; A(t)  is the probability that all failures 

have been repaired by time t.

Software reliability models can be split into two main categories: classical and 

Bayesian. Classical models assign probabilities according to a relative frequency 

interpretation. Under this interpretation an experiment is performed (or imagined 

to be performed) repeatedly under identical conditions. If  an event E  is observed 

to occur m times in n trials, then the probability of E  is assigned P r { £ }  =  

l im n - ,00 m /n .

The classical view of reliability [BILLS 3] considers a large fixed number No of 

sim ilar components. They are operated simultaneously starting from time t =  0. 

Let Nf ( t )  be the number of components that have failed by time t. Then N 3(t) =  

No -  Nf [ t )  are still operating. At any time t, the reliability function will be given 

by
B „ ,  _  JV.(t) _  No -  N,(t) Nf(t)
R { t ) -  No ~  No No

Thus the unreliability (Cdf) is

JV/(f)F(t)
N o  '
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Differentiating F( t )  gives the pdf

/ ( t )  =

To get the conditional failure rate A(t) it is necessary to substitute N s(t) for No, 

since the number of components exposed to failure drops over time.

Puzzlement over how software reliability fits in with these frequency-based 

statistics (each piece of software is unique) has led some researchers to prefer a 

Bayesian approach. In  Bayesian statistics, initial probabilities are allowed to have a 

purely subjective basis until they are iteratively updated in light of actual empirical 

data. Probability is viewed as a mathematical expression of a person’s degree of 

belief concerning a certain proposition. The probability scale from 0 to 1 is merely a 

means of calibrating subjective attitudes and has no relation to an imagined infinite 

series of repeated experiments.

Prior distributions are used to represent what is known about the parame

ters before experimental evidence (sample data) is available. Difficulty can arise, 

though, in finding the proper prior distribution that conforms to vague prior knowl

edge about a parameter.

Bayesian statistics takes its name from the English Presbyterian minister and 

mathematician Thomas R. Bayes (1702—1761). Rev. Bayes developed a theorem 

called Bayes’ Rule: Suppose that the events A i, A 2 , . . . ,  A n form a partition of a 

sample space. Let B  be some other event. For any j ,  a joint probability can be 

expressed as

P{ Aj n B ) = P { A j ) x P{ B\ A j )  

or by reversing the two events, as

P(jB n Aj )  =  P{ B)  x ?(A ,|B)
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where P ( B)  is nonzero. Because P ( A j  C\ B)  =  P ( B  n  Aj ) ,  it must now be the case 

that

P ( A j )  x P ( B \ A j )  =  P ( B )  x P ( A j \ B ) .

Solving for P [ A j \ B )  gives

p {Aj W  =

Since the Aj  are mutually exclusive,

n
f ’ (B ) =  £ > ( A i )x J > ( f l |A i)

1=1

and thus

" ( . I  IB) X P{B{Ai )n  A ) T.U ^ ( A . )  X ^(B |A,.)

This formula is what is called Bayes’ Rule. For a continuous distribution the de

nominator is replaced by the corresponding integral. Use of a special distributional 

form called a conjugate prior results in greater tractability.

This rather simple equality, based on sound mathematical reasoning, took on 

a new importance some two hundred years after its discovery. Some statisticians 

claimed that the prior probability P{ Aj )  could be based on subjective judgment 

and historical data.

For example, the software can be assumed to exhibit a certain reliability 

function or failure rate function. As the program is tested it leaves behind a failure 

history. Certain events might cause the reliability or failure rate to be considered 

improved:

1.) Correction of faults that have caused failures (especially the first-found high- 

failure-rate faults)

2.) “Long” interfailure times
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Reliability will be considered worsened when

1.) New faults are introduced during repair activity

2.) “Short” interfailure times occur

The Review of Related Research in the next chapter will cover the major 

software reliability models, whether arising from classical or Bayesian foundations.

Software Reliability and Hardware
Microelectronic digital hardware is starting to take on more and more the 

characteristics of software vis-à-vis reliability. There are several reasons for this: 

First, a correctly manufactured, hermetically sealed semiconductor device 

is not subject to wearout[OcON8l]. The presence of the wearout failure mode 

has been one of the major reasons for the schism between hardware and software 

reliability principles.

Software and these semiconductor devices experience failures from  the same 

three failure modes[SH0083]:

1.) Poor-quality fabrication

2.) Design error

3.) Overload

Examples of “poor-quality fabrication” for software would be typographical 

errors, configuration management problems, and incompatibilities w ith operating 

system or hardware environment. “Design error” would include wrong algorithm  

or incorrect data structure. “Overload” will occur when real-time or multi-user 

systems have demands place upon them that exceed their designed capacities.

Second, as the circuitry in microelectronic devices becomes more and more 

complex, it has become impractical or impossible to perform 100% testing in a 

reasonable period of time. Just like software.
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Third, often an integral part of the device is a permanently stored program 

or microprogram ( “firmware”). Any nontrivial program there is almost certain to 

contain bugs. The techniques of software reliability modeling would apply directly 

to that code.

The import of all this is that the results of software reliability research, includ

ing the type of modeling techniques developed in this work, will find applicability 

in areas of hardware reliability as well.
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CHAPTER 3 
REVIEW OF RELATED RESEARCH

In order to sketch the historical development of software development and 

portray the state of the art, the major literature in the area will be surveyed. The 

survey will provide the context and motivation for the research presented in this 

work.

Mathematical reliability models originated in World War I I  Germany after 

frustration with the first ten of Wernher Von Braun’s V - l  missiles, all of which 

either blew up on the launchpad or plopped into the English Channel[HENL81]. In 

recent years a number of promising software reliability models have been proposed. 

Each mathematically summarizes a set of assumptions the author has made about 

the phenomenon of software failure. The goal is to devise an accurate predictive 

model. Most of the models described here have been empirically verified to one 

degree or another, but none has emerged as clearly superior or ready for commercial 

use.

Software reliability models are an outgrowth of hardware reliability modeling. 

From a user’s point of view, whether a system failure was caused by software or by 

hardware is unimportant: The disruption is still the same. This is why the U.S. 

Department of Defense has placed software under the “reliability umbrella.”

The extensive body of literature and techniques developed for hardware re

liability analysis, and the acknowledged success of that field, have seduced many 

researchers into attempting to apply hardware modeling methods to software. Con

troversy persists. Certainly there are differences between the nature of software and 

hardware. Neither hardware nor software failure times can be exactly predicted in

34
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point of time, but for different reasons. For hardware, failure is caused by accumu

lated random stresses and wearout. Software is deterministic in that certain input 

will always result in a failure. Simple redundancy of the same code will do nothing 

to increase the reliability of software. On the other hand, with proper quality 

control feedback, a fault will not recur once discovered. The development process 

is not deterministic: Human fallibility leaves the program littered with faults, the 

whereabouts of which are initially unknown. Thus for software the faults are always 

there, and the passage of time serves to reveal them through testing and use. For 

hardware the fault is often generated over time, when stresses or wearout have 

accumulated to the breaking point[SCHN79j. O f course, software and hardware 

alike can suffer from inherent design failures, transient overload conditions and 

poor-quality fabrication.

As pointed out in the previous chapter, complex digital hardware, such as 

microcoded processors, exhibit failure behavior closer to that of software and are 

amenable to software reliability techniques.

Software reliability models generally employ named theoretical probability 

laws because such distributions are completely summarized by a small number of 

parameters (usually 1-2); there is no need to operate with long tables of observed 

frequencies. Also, theoretical distributions exhibit convenient, well-known prop

erties that facilitate mathematical manipulation and analysis and allow statistical 

inferences to be made.

Hudson’s [HUDS67] view of fault correction as a Markov “death” process was 

the first significant paper on the subject of software reliability modeling.

Timc-Domain Models
Early researchers made the simple observation that as faults were removed 

from a program, the failure rate went down. They then went about postulating a 

relationship between the number of faults remaining in a program and the program’s
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failure rate. They tried to stay as close as possible to the familiar probability 

distributions of hardware reliability analysis.

a variant of Govil’s unifying notation[GoviS4]. Let r  denote the cumulative debug

ging time. Let t denote the operational time interval from the present, projected on 

the basis of no further fault correction. As functions of cumulative debugging time

reliability will be denoted R ( t , t). The s-expected value of the total number of faults

will be denoted iV(oo) =  l i m T - > o o  fV(r). The function g(t) denotes a function of 

operating time t that may be equal to 1 in some models.

Knowledge of the functions N [ t ) and g(t) will be sufficient to determine these 

figures of merit:

Failure rate—

Additionally, the special case of the mean time to first failure is defined as

In order to compare existing software reliability models, it is helpful to employ

r and operational time interval t, the failure rate will be denoted A(r, t), and the

detected and corrected by debugging time r will be given by the renewal function 

N( r ) .  The s-expected value of the initial number of errors present in the software

Reliability function-

Mean time to failun

rco
M T T F (t )  =  /  R{r , t )  

Jo

roo
Tq =  M TTF(O ) =  I  R (0 ,t) 

Jo
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Jelinsky and M oranda[JELl73j developed a model based on the following 

assumptions:

1. The failure rate at any instant is linearly proportional to the number of 

faults in the program.

2. The interfailure times are mutually independent random variables.

3. A ll faults in the program are equally likely to cause failure.

4. The fault causing a failure is instantaneously corrected without introducing 

any new faults.

The resulting model is called the Jelinsky-Moranda De-Eutrophication Model, 

drawing an analogy to remedial pond management. Assumption ^ 1  implies that 

a particular version of the program (frozen code) w ill exhibit a constant failure  

rate. A negative exponential distribution of interfailure times is then dictated  

by the fact th a t it is the only distribution w ith  a constant failure rate[BARL75]. 

Figure 8 illustrates the characteristic shape of the negative exponential probability  

law. Since the failure rate is not a function of operational time, g(t) =  1, and thus 

the piecewise constant failure rate is formulated as

A (r,t) =  =  K[ N ( oo )  -  N ( t)\,

where i f  is a proportionality constant.

Integration gives

N ( t ) =  AT(oo)[l — exp(—K r ) ] ,

and so the failure rate is

A(r, t) =  K N ( o o )  e x p ( - K r ) .

The reliability function is obtained from a further integration as

R(T, t )  =  e x p (-< iiCiV(oo) e x p (-K 'r ) ]
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and the mean time to failure is

M T T F (r )  =  Toexp(Kr)

where

r ,= M T T F (0 )  = ^ y.

The probability density function is

/ ( r , t )  =  -  dRQt ' ^  =  KN(oo)  exp(—i f r )  exp[—tKN(oo)  e x p (-K r )] .

The number of errors remaining in the software after debugging time t  is

iV(oo) =  e x p (-K r ) .

In terms of failures, the M T T F  between the %'th and (i +  l)st software failures can 

be expressed as

M T T F i =  jr[iv(<x>) -  .y

(The variable i  =  1 , 2 , . . .  is called the failure sequence number.)

Thayer, Lipow and Nelson[THAY78] give an extension of the Jelinsky-Moran- 

da Model in which multiple faults can be detected in a time interval. Correction 

of the faults is considered to have been accomplished, not necessarily immediately, 

but at some time during that same time interval.

Shooman’s m odel[SH0073, SH0075] came out about the same time as the 

Jelinsky-Moranda model. He assumes that the number of machine-level instructions 

in the program is a constant J. He then works w ith  the “normalized” in itia l fault 

content
AT(oo)

£0 =  T ~

and the normalized number of faults corrected by debugging time r:

#
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The normalized number of residual faults is then 

W ith  again g(t) =  1 , the failure rate is formulated

< T’ t) =  ^ L =  K
AT(oo) -  N { t )

where K  is in this case a “bulk” proportionality constant that Shooman says can 

be estimated from

K

After integration,

and so

#  of catastrophic faults detected 
total #  of faults detected

jV (r) =  N(oo) \ l  -  e x p (-A 'r / / ) ]

K
X(t , t) : yAT(oo) e x p ( - f f r ) .

The reliability function is

R(r , t )  =  exp
K
y N (o o )  exp(—.K>)t

and the mean time to failure is

where

M T T F (r )

T0  =

i  exp(Kr)  
KN(oo)

K N {oo ) '

The probability density function is

f { r , t )  =  K N j:00) e x p ( - K r )  exp
K

-y J V (o o ) e x p ( -K r ) t
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Another difference between the Jelinsky-Moranda and Shooman models, which 

comes into play during parameter estimation, is that in the Jelinsky-Moranda 

model, debugging time is measured in calendar months, whereas Shooman defines 

debugging time in terms of effort (person-months).

Musa[MU3A75] introduced the idea of using execution (CPU) time as a more 

appropriate unit of exposure to “failure stress” than calendar time. He provided 

an elaborate companion model that relates execution to calendar time in light 

of resource constraints such as failure-identification personnel, failure-correction 

personnel, and the residence time of the program in the computer. Musa has 

collected a great deal of data[MusA79A] in order to investigate the descriptive 

realism of his model and evaluate its predictive ability. The basic model is very 

similar to that of Jelinsky-Moranda and Shooman. Once again, g ( t )  =  1. The 

failure rate is

A M  = ^  = K/|JV(oo) -  JV(r)l,

where i f  is a proportionality constant (the “fault exposure ratio” ) and /  is the 

“linear execution frequency.” The fault exposure ratio relates “fault velocity” and 

failure rate. Fault velocity is the rate at which faults would be encountered by 

the CPU if the program were linearly executed. The fault exposure ratio thus 

“represents the fraction of time that the ‘passage’ results in a failure[MUSA84],” 

accounting for loops and branching and varying machine states. Typically, K  is 

1.5-3 x lO -7 . The linear execution frequency is the average instruction execution 

rate divided by the number of machine-level instructions in the program. Deriving 

the formulas,

N ( t) =  jV(oo)[l - e x p ( - / i f r ) ]

\ ( T , t )  =  K f N ( o o )  exp(—/J fr )

R(T, t )  =  e x p [ - i f / iV (o o ) e x p ( - / i f 7-)t]

MTTF(r) =  To exp ( / i f  r)
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T° =  K fN {o o )

/ ( t , t) =  K fN ( o o )  ex p { fK r )  exp [-if/A T(oo) e x p (- / i f r< ) ] .

The constant i f  is decomposed into the product CB.  C  is the “testing 

compression factor” that is supposed to account for the difference between the 

testing and operational milieux. (Jelinsky-Moranda and Shooman had implicitly 

assumed that the program was tested using a simulator that emulates the program’s 

operating environment.) The failure rate will be affected by the workload of the 

system, and the testing environment is usually much more “stressful.” Musa has 

empirically estimated the testing compression factor to average around 10.9. B  

is the “fault reduction factor,” a proportionality constant that relates the fault 

correction rate to the failure rate. Typically B  is 3-8 x lO -3 .

The number of faults detected and corrected by time r can be re-expressed as

C r  Y
N ( t ) =  JV(oo) exp -

Mo To

where Mo is the total number of faults occurring during the program’s maintained 

life (the period in which faults are corrected). The relationships

N(oo) =  B M q

and

N { t ) =  B M ( t )

hold, where M (r )  is the number of failures experienced, given by

M ( r )  =  Mo 1  -  exp

The additional number of failures that must be experienced to meet an M T T F  

objective Tp is

AM (r) =  MoT0 j ^ F ^ y  -
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and the additional execution time required is

M T T F  (r) /

A  compact expression for the reliability function is

R(T, t )  =  exp (  Î-----
V M T T F (r )

Musa claims that

“Most of the assumptions that were made in deriving the model have been validated.... 
There is no evidence to indicate any class of software to which the model would not 
apply. This model has been tested and its validity examined much more thoroughly 
than any other proposed software reliability model[MuSA84].”

Moranda has proposed a variation[MORA75] of the original Jelinsky-Moranda 

model that makes the additional assumption that the failure rates between succes

sive failures form a geometric progression. W ith g(t) — 1, the failure rate is

A (r,t) =  =  D K ~ n ^ .
UT

And then
xr/ . ln (l +  D r  In K
M l  =  --------

M T T F (r )  = r \ n K  +  ^-
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where B  is a constant. Unfortunately the number of remaining faults cannot be 

predicted as in the case of the ordinary Jelinsky-Moranda Model.

Lipow[LlP074] has suggested a modification to the Jelinsky-Moranda Geo

metric model to allow multiple faults in an operational time period.

Schneidewind[SCHN75] recommended an empirical approach that tries vari

ous curves in an effort to fit the project’s data. It was he who underscored the 

importance of differentiating between operating time t  and debugging tim e r.

Schick and Wolverton [ S c HI7 8  ] presented a model based on a failure rate that 

discretely decreases at each failure but increases linearly during the debugging time 

between failures. For this model, g ( t )  =  t .  (Because of ambiguous notation, some 

early papers interpreted the model as in effect having g ( t )  =  r or g ( t )  =  r t - i )

The failure rate is

•M M ) =  =  « W o o )  -  JV(t)].

After integration,

Then

N { t) =  JV(oo)[l -  exp (-K Y )].

A (r,t) =  K N ( o o ) e x p ( - K T ) t

R(T, t )  =  exp

M T T F (r )

KN(oo)  exp(—iC rjt

7T

2

1/2
e x p (K r / 2 )

2KN(oo)

To =  [7r / 2 A:iV(oo)]1/2.

The number of faults remaining after debugging time r  will be

N(oo)  exp(—iV r).
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The probability density function is

/ ( t ,  t) — KiV(oo) exp (-.K Y )iexp (-K 'iV (oo ) e x p (-K Y )i2 /2 .

This results in a Rayleigh distribution for each interfailure interval, as opposed 

to the negative exponential distribution arising in the basic Jelinsky-Moranda, 

Shooman and Musa models. Figure 9 shows the characteristic shape of the Rayleigh 

distribution standard pdf

/(< ) =  ktexp t >  0 .

The early Wagoner model[W AG 073] in effect generalizes on the Schick-Wolverton 

model by assuming that the failure rate is proportional to the product of the number 

of remaining faults times a positive power of the debugging time between successive 

failures. For this model g{i) =  The failure rate is then

A(r, t) =  [iV(oo) -  N ( t)\.

Thus

N ( t) - N[oo)[l  -  exp(—iO )]  

A (r,t) =  KN(oo)  exp(—

R{t , t) =  exp

M T T F (r )  =  Toexv{KT/0)

— ̂ -jV(oo) exp(—K r ) ^

r 0  = ^ H l
[ f  iV(oo)] /P

/ ( r , f )  =  KN{oo)  e x p (-R 'r ) ^ - 1  exp j^-^-W (oo) e x p f -F f r )^  .

The Wagoner model leads to a Weibull distribution for the interfailure times. The 

Weibull distribution has found many engineering applications since first described
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[WEIB39] by its namesake in 1939. The Weibull distribution is one of the few 

common distributions that exhibit no specific characteristic shape, so it affords 

great adaptability in fitting experimental data. The special case /? =  2 reduces to 

the Schick-Wolverton model, and the special case /? =  1 reduces to the Jelinsky- 

Moranda model. Figure 10 shows the shapes of some typical Weibull distributions 

with standard pdf

In the Goel-Okumoto nonhomogeneous Poisson process (NHPP) model 

[GOEL79], the time to a given failure is assumed to be dependent on the preceding

than as a fixed parameter. This formulation allows for imperfect debugging, in 

that the fault causing a failure might not be immediately corrected. Each fault is 

assumed to have an equal probability of discovery.

If  the failure rate is treated as a nonrandom function A(r) of time r , the result 

is a (temporally) nonhomogeneous Poisson process (NHPP). Let N (r) be a random 

variable denoting the total number of faults detected by time r . The mean value 

function is iV (r), as before.

The assumption is made that the s-expected number of software failures in 

the “small” interval (r, r  +  A r) is essentially proportional to the remaining number 

of faults at time r, that is:

N ( r  +  A r) — JV(r) =  6 [JV(oo) — iV (r)]A r +  o(A r)

where o (A r ) /A r  -» 0  as A r  -» 0 and 6  is a constant of proportionality. By allowing 

A t  to approach zero, a differential equation

t > 0,/? > 0, a > 0.

failure. Also, the inherent number of faults is regarded as a random variable rather

JV'(r) =  N(oo)b -  bN(r)
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is obtained. Solving the equation under the boundary condition iV(O) = 0  yields 

the mean value function

N ( t) =  iV (oo)(l - e x p ( -h r ) ) .

The failure rate as a deterministic, continuously nonincreasing function of time is 

then

X(t) =  N ' ( r )  =  iV(oo)6 e x p (- 6 r).

The reliability given that the last failure occurred at time s is

fi(t|s) =  exp(—[jV(t +  s) — iV(t)]) =  exp(—a{exp(—6 t) — exp[—6 (t +  s)]}).

The s-expected number of remaining faults at time t is

E{iV(oo) — N ( t )}  =  AT(oo) exp(—frr).

N (r) is Poisson-distributed with mean and N(oo) is Poisson-distributed w ith

mean N(oo).  The number of remaining faults N (t)  =  N(oo) — N (r) has s-expected 

value

E {N (r ) }  =  AT(oo) e x p ( - 6 r).

A useful aspect of the Goel-Okumoto model is that parameter estimation can 

be performed on the basis of either of two forms of historical data:

1 .) interfailure times, or

2 .) number of failures within specified intervals.

In  the failure-count version, the number of failures in nonoverlapping intervals 

are considered independent. That is, Goel and Okumoto make the assumption 

that N (t) has s-independent increments and is Poisson distributed with mean value 

function m(t):

P r{N (t) =  y} =  — ^ - e x p [ - m ( i ) ] ,  y =  0 , 1, 2, . . .  .
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In the time-between-failure version, as was covered, the time between the (t — l)s t 

and zth failure is dependent on the time to the (i — l)s t failure.

To contrast the earlier models with the Goel-Okumoto model: In the early 

models each interfailure period was governed by a distinct Poisson process, whereas 

here the whole debugging phase ( “r ” space) is governed by a single nonhomogeneous 

Poisson process. At the expense of conformance to our intuitive desire for a 

piecewise constant failure rate, Goel and Okumoto achieve the analytical simplicity 

of a smooth failure rate curve. Now they can complicate the model someplace else: 

by considered the inherent number of faults in the program to be a random variable 

as opposed to a fixed but unknown parameter.

Bayesian Models
Littlewood questioned the theoretical validity of bug-counting models 

[LITT79A] [L it t SO] and substituted a Bayesian approach that views reliability as 

a measure of strength of belief that a program will operate successfully [L ITT? 3 ].

In  the Littlewood-Verrai m odel[LlTT?3], the phenomenon of software failure  

is considered to arise from two distinct sources of randomness:

(1) The program— the input data sets on which it will fail are unknown, and

(2 ) The input— the particular input data sets the operational program will be 

presented with are unknown. A certain proportion of the input data sets 

will result in failure and the other data sets will not.

The randomness in the input data is modeled by assuming that the interfailure 

intervals T t- have conditional distribution

pdf{Tt|Xt} =  A1exp(-AtTt)

where T *  denotes the time interval between the ( i  — l)s t and tth software failures. 

The interfailure execution times are thus s-independent, negative exponentially dis

tributed random variables. In  this assumption, Littlewood and Verrai are following
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in the footsteps of Jelinsky-Moranda and Shooman. However, in those models 

the failure rate drops deterministically after each failure; in the Littlewood-Verrai 

model, it is only required that At- <  At- i  in a probabilistic sense. As in the Goel- 

Okumoto model, then, debugging is considered to be imperfect.

to repair activities. Figure 1 1  illustrates the shapes of some typical gamma 

distributions with standard pdf

The assumption was made in earlier models that a fault is immediately removed 

upon occurrence of the failure it caused. More realistically though, a lag occurs 

between the time a failure occurs and the time its underlying fault is discovered 

and removed. Not only that, but the repair activity itself may generate new faults. 

Evidence strongly suggests that most faults originate in the requirements and design 

phases[LlP079]. A software failure caused by a requirements misunderstanding 

or design deficiency may require extensive reworking of the program, and this 

reiteration of the original development process would likely produce new bugs. 

In fact, “the majority of software failures during operation can be traced to the 

unforeseen side effects of postrelease patches[SCHIS2].”

The initial number of faults, the speed with which failure-causing faults are 

repaired, and the degree of debugging “perfection” (lack of new-fault generation) 

are all in some sense indicative of the “quality” of the developing organization. The  

rate of ^(-)'s increase is directly related to this “quality” and inversely related to

Littlewood and Verrai view the piecewise failure rates as a sequence {A*} of 

s-independent random variables. For the sake of mathematical tractability, each is 

assumed to exhibit a gamma distribution:

where the $ (*), an increasing function of i, reflect reliability growth attributable
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programming task difficulty. For any particular project, Littlewood recommends 

that various families of growth functions be tried in an effort to find the best fit. 

The two sources of randomness are combined via Bayesian techniques.

Two parametric families of growth functions that Littlewood himself has 

suggested are the linear form

V’C1') =  Æl +  /?2l

and

V>(l) =  A  +  /?2l"2- 

Musa has suggested[M u saS4 ] the rational function

Mo To a  
=  M ^ T i

where Mo is the s-expected number of failures during the maintained life of the 

software and T0  is the initial M T T F . In any case, Littlewood’s model leads to the 

reliability function

roo
R(t)  -  /  exp[-Ait]gam m a(a, cZA,- 

Jo

where i is the number of failures that have already occurred. Using the relation

A(f) -  -
R(t)

dR(t)  
dt

the failure rate after the ith  software failure is

=  T + W i 1 t i - t - t i + l '

The unconditional distribution of T* is a Pareto distribution. Figure 12 illustrates 

the shapes of some typical Pareto distributions. The Pareto distribution is a 

positively skewed distribution that is known for its long tail that approaches zero 

more slowly than other popular distributions. Instead of M T T F , Littlewood uses
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time-to-failure percentiles. As mentioned before, the possibility of a fault-free 

program implies that the M T T F  may not exist. It  so happens that the Pareto 

distribution with parameters r, A >  0 defined by the pdf

f { x )  =  \ r A ' ^  for^ A 
[ 0  otherwise

possesses a finite nth moment if and only if n <  r, further explaining Littlewood’s 

disparagement of M T T F .

Littlewood and Verrall first presented their model w ith  an example using 

simulated data[L lTT73]. Later, Littlewood used some of M usa’s own data and 

demonstrated that the Littlewood-Verrall model gave a superior fit[L lT T 78 ].

One of the obvious inadequacies of the early models was that they related the 

failure rate (proportion of inputs resulting in failure) to the number of faults present 

in the program version. Certainly some fault-containing code would be encountered 

more frequently than other fault-containing code. For example, code in a loop will 

generally be executed more times than straight-line code. In  Littlewood’s Bayesian 

Differential M odel[LlTT79A ], each fault exhibits its own failure rate isj. The overall 

program hazard rate when (i — 1 ) failures have occurred is

Xi =  Ui +  i/2 +  ■ ■ • +  ^ ( N - t + l )

where n represents the number of detected and corrected faults up to now. The 

At’s are independent and identically distributed with a gamma pdf. In  the previous 

models, the failure rate only fell after a fault was corrected. (A pseudofailure can 

be considered to occur at the end of testing, but this merely puts a floor under 

the reliability [MUSA84].) One is reminded of the hardware reliability adage, “The 

greater the reliability of a device the more difficult it is to determine its reliability 

[JORD83].” In this model, long periods without failure can also cause the failure 

rate to decline. Since faults are not showing up, the ones that are left, if any, must
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in toto possess a low failure rate. From an intuitive point of a view, this innovation 

seems paradoxical: Frozen code should exhibit a constant failure rate. But no one 

can deny that people’s confidence in the reliability of a program increases in the

rate is indeed constant, but a person’s opinion about what its value is varies.

Letting W  denote the event that a particular fault u was not eliminated by 

elapsed time t  =  fy, the pdf for u  given that the fault was not eliminated by 

elapsed time r is obtained from Bayes’ theorem as

is gam m a(a,/?),!' >  0, pd f{i/|tV } is gamma(«,/3 +  r). Furthermore, letting R =  

iV — i +  1  be the number of remaining faults, pdf {A ,} is gamma (Æ a , /3 +  r ). The 

first parameter is familiar from straight fault-counting models; however, corrections 

early on in testing reduce the failure rate more than those later on. The second 

parameter reflects the subjective belief that long-surviving faults most likely have 

a low failure rate. That is, those faults that contribute greatest to the program 

failure rate would tend to be discovered first.

The distribution of interfailure times is

is that all software failures are observed. W hat if the failure detection process 

is imperfect? The reliable-reference problem alluded to earlier or other problems 

could cause a failure not to be detected.

absence of failures. The resolution of the paradox may be that the actual failure

where /(&') denotes the pdf of u at time zero. Under the assumption that / (v )

00

p d f{T t-|A i}pdf{A i|a,/3,£i, t 2 , . . .  A - i }  dA*

Ra(/3 +  T ) R a

P +  T +  t i ) * * * 1’•Ra+l’

a Pareto distribution again.

It  might be mentioned that an implicit assumption of the preceding models
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Recently Littlewood has developed an adaptive m ethod[L ITT85] that allows 

a time-domain software reliability model to learn from its past mistakes. I f  a model 

shows a systematic bias (optimistic or pessimistic), the method can correct that.

I f  the model is just noisy (frequent swings in the predictions) the method will not 

help.

The Thompson-Chelson Bayesian m odel[THOM79][THOM80] concerns itself 

w ith  developing acceptance-rejection criteria for programs. The producing and 

consuming organizations cooperate in a quality-surveillance program which protects 

the consumer against delivery of an inferior software product and protects the 

producer against rejection of acceptable software. Rejection means to have the 

program tested more. The model uses a gam m a-distributed prior for the piecewise- 

constant failure rate random variable. A second prior is for the probability that at 

least one fault resides in the program. Other software reliability im plicitly assume 

this probability to be equal to one. The posterior failure rate C df is denoted 

where H  is historical failure data. The program is accepted if F ( X \ H )  >  I  -  ot, 

where a  is the significance level.

Markov Models

Markov models picture the system as going through a sequence of states. 

For example these states can be “up” and “down” in order to address repair time  

[TRIV74] [TR IV75]. In  M arkov models, the probability of a given state transition  

depends only on the present state. The transitions occur at fixed tim e intervals. 

In  semi-Markov models, a random amount of time passes between transition times. 

Costes, Landrault and Laprie[C osx78] are able to calculate availability figures 

w ith  their semi-Markov model. Another use of Markov models assigns a state to 

each module to study the “macro” reliability when the reliability of the individual 

modules is known[LlTT75A] [LlTTSO] [CHEU80].
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A  couple of Markov models purport to figure in penalty costs 

[CHEU80][LlTTSO], but these costs are merely assumed to be known constants. 

Figure 13 shows a four-state Markov model for a system with failure rates A; and 

repair rates m.

Data-Domain Models
In data-domain models (first described in [NELS73]) a computer program 

corresponds to computable function, F ,  whose domain is the set E  =  {E { , i  =  

1 ,2 , . .  . , N } .  E  consists of all possible sets of input data values. Each E{ is a 

complete set of data values needed to run the program. The output of the program 

is the function value F { E i ) . Because of the presence of faults, the computer program 

will actually implement the function F ' . F'  is a partial function, since the presence 

of program faults may prevent the program from terminating [Me G E8  2 ]. The sets 

of input values on which F'  produces a software failure [ F 1 differing from F)  is E e. 

Letting N e be the number of input data sets E{ in E e, the probability that a single 

run will result in a software failure is

N e
p = lv -

Reliability is the probability of no failure:

N eR = l - p = l -

I f  Pi (t =  1 , 2 , . . . ,  N )  is the probability that the selected input data set is E {, and 

Yi is 0  if Ei  is successful and 1 if E{ results in a software failure, then

N

P =  5 3  P* yv
t= l

The reliability (probability of no failure in n runs) is

R{n) =  R n — ( l  — p)n.
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Different applications and users will tend to have different {pt} distributions 

[CHEU80], resulting in different reliability values from the same software.

Phenomenological Models

The time-domain models estimate their parameters primarily on the basis 

of observed interfailure times— from the dynamic failure behavior of the program. 

Assuming that the differences between the testing and operational environment 

can be accounted for, is interfailure-time information “pithy” enough to sufficiently 

characterize those parameters? It  may be that the observations that can be made of 

a running program are insufficient to construct a good model. A t the other extreme 

are the phenomenological models, such as Software Science[HALS77], in which the 

static features of the program code (such as size, complexity, and structure) are 

analyzed in an attempt to estimate reliability. The estimated number of faults in 

a program is given by

where K - is a proportionality constant and E O  «  3000 is the average number of 

mental discriminations between faults. Halstead bases the 3000 figure on psycho

logical research suggesting that the human brain can handle five “chunks” of data 

at a time. V  is the program volume defined as

V  =  N  log2 n.

N  is the program length consisting of the total number of operator and operand oc

currences, and n is the total number of distinct operators and operands. Validation 

efforts have produced inconclusive results. Another metric is McCabe’s cyclomatic 

complexity. The value of V  (G) is the number of enclosed areas on the plane of the 

program graph, plus one for the unbounded area outside the graph. I t  is equivalent 

to determining the graph theoretic “basis set.” In  graph theory, the cyclomatic
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number is

V( G)  =  e -  n +  p

where n is the number of nodes, e is the number of edges, and p is the number of 

connected components. McCabe’s cyclomatic complexity— the number of linearly 

independent program paths— through the program graph— is V ( G ) + p .  [M c C a 76]

Thayer and Lipow derived through multiple regression techniques the empir

ical relationship

p - 0.05986

where p is the number of modifications required to correct development-phase 

failures and b is the number of branches in the software. Thayer and Lipow had 

started out w ith nine predictor variables, such as the number of procedure calls, 

loop complexity, and number of input/output statements, but in the end eliminated 

all but one as insignificant.

Fault Seeding

M ills [M ILL72] proposed a “fault-seeding” model that works by injecting 

known bugs into a program to see what proportion of them are discovered. The 

number of real bugs found is then presumed to be in the same proportion to the 

total number of real bugs that were present. If  y is the number of injected faults, 

u is the number of indigenous faults found so far, and v is the number of induced 

faults found so far, the maximum likelihood estimator for x, the original number of 

indigenous faults, is
yu

x =
L V

Variations of this approach include having two independent testing teams debug 

the same program and using a count of the common faults.
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Discussion
The current state of the art of software reliability modeling is vulnerable to 

criticism in several respects:

1.) Valid ity— No model has been subjected to the kind of validation that would 

inspire confidence in its use on a widespread commercial scale. Only recently 

has a great deal of thought been put into what constitutes a fair validation  

test w ith  which to compare the competing m odels(LlTT85].

2.) Environment— Dissimilarity between the testing and operational environ

ments is only addressed in Musa’s model, and he tries to account for the 

time differential, but time is only one aspect of the dissimilarity.

3.) Workload— Another problem in existing models is that they do not take into 

account the effect of workload— the rate at which transactions are presented 

to the system— on the failure rate.

4.) Immutability of code— In existing models, immutability of the code is as

sumed, but as time goes on the size of program will change, and last-minute 

requirements changes may turn a program into a patchwork-quilt that di

minishes debugging efficiency. That is, a “law of increasing entropy” may 

exist for programs.

5.) Variation in testing intensity— Testing intensity is in reality not uniform; it 

oscillates up and down through development. ( It  especially increases near 

delivery deadlines.) Also,

“The models assume path homogeneity— that is, data are entered randomly and such 
data uniformly exercise all code. This is in direct contradiction to the reality that the 
statistically significant paths cover a small percentage (say under 10%) of the code 
[B E IZ 8 4 ].”

6 .) Equal weighting of all failures— The lack of attention to penalty cost is 

another criticism that has been leveled at the current models and is the
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crux of the research presented in the chapters to follow. Software reliability 

has usually been defined in terms of failure occurrence as opposed to failure 

effect. Since the effect of a failure can be so minor as to be ignorable or 

so major as to kill human beings, it seems silly to count them equally. 

Failure effect is probably more in the mind of a user when he says “software 

reliability” than is mere failure occurrence.

The research described in the remainder of this dissertation involves a new 

software reliability modeling technique that squarely addresses criticism # 6 .
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CHAPTER 4 

DEVELOPMENT OF THE MODELING TECHNIQUE

Now a new modeling technique will be presented. This chapter will provide 

an overview of the technique and develop its failure-counting component; the next 

chapter will develop the penalty-cost component and tie the two components to

gether.

Describing empirical phenomena mathematically necessarily involves making 

some simplifying assumptions [ C H IA 68 ]. Framing the problem in terms of random 

functions will provide insight and useful answers. The failure-counting component 

of the model is built from a set of simple, abstract assumptions about the nature 

of software failure occurrence.

Statement of the Question
Given sufficient historical data, for example the results of a suitable simulation 

run, probabilistically characterize the aggregate penalty cost that a system will 

incur from software failure during operational time interval (0 , t].

Overview of the Modeling Technique
A model is the formalized expression of a quantitative understanding of a 

situation. The presence of uncertainty in the phenomenon of software failure and 

its associated penalty cost is acknowledged by the presence of random variables. 

The modeling technique developed here makes some assumptions regarding the 

phenomenon and uses probabilistic techniques to yield a distribution of future 

values, conditioned by a knowledge of past values. Prediction is made on the 

basis of an informative experiment, in which a sufficiently large number of software

64
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failures and their concomitant penalty costs have been observed. Additionally, prior 

information may be available concerning unknown distributional parameters. This 

prior information can place plausibilities or probabilities on the various possible 

values of these parameters.

Upon the occurrence of a software failure (in simulation or real life ). the 

consequences of the failure must be quantitatively appraised, by subjective or 

objective (possibly automated) means. The approach supposes a function that 

measures the “loss,” the penalty cost that has been incurred. The primary random 

variables are the interfailure times and the individual penalty costs. A number of 

associated random variables are of interest:

1 .) The incidence of software failures in a specified period of time.

2.) The failure times.

3.) The time to the nth failure.

4.) The failure recurrence times, backward and forward.

5 .) The penalty cost of an individual failure.

6 .) The aggregate penalty cost over a time interval.

While many of the general results covered here can be used for arbitrary 

probability distributions, the adoption of a few simple assumptions about the 

phenomenon of software failure/ penalty cost will lead to special mathematical 

forms that will facilitate computation and analysis. These distributions will each 

be completely characterized by a succinct set of parameters whose interpretation 

will depend on the individual distribution. The parameters will always be positive.

Technical Summary

Since the details of the modeling technique are to be found distributed 

throughout two chapters, the model is concisely summarized here.
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Parameters

The parameters of the model are

1 .) Selected structure of failure-counting component (class of stochastic process 

that probabilistically characterizes failure occurrence times, failure frequency 

and interfailure times).

2.) Selected structure of penalty-cost component.

Inputs

The two inputs to the model are

1 .) Failure rate function (constant rate A, time function A(t) or random variable 

A).

2.) Penalty cost distribution (empirical or theoretical)

Outputs

The model will provide

1 .) A probabilistic characterization of the aggregate penalty cost that will be 

incurred over a future time interval by a released software system. This char

acterization includes probability density/mass function and various statistics 

such as quantités, moments, etc.

2.) As special cases (penalty costs all equal to 1), mean-time-to-failure and other 

figures of merit already obtainable from current reliability models.

Description

The penalty costs associated with the software failures are the s-independent

random variables

X i , X 2 , . . .  •

An individual penalty cost is probabilistically characterized by the cumulative

distribution function S'(x). If  the counting process N(t) gives the cumulative



www.manaraa.com

number of software failures that have occurred in time interval [ 0 , t ) , the aggregate 

penalty cost for that interval is the compound stochastic process

Z(f) =  X i  +  X 2 H +  X|\|(f).

It  is assumed that penalty cost is s-independent of N(t).  The aggregate penalty 

cost Z(t) is probabilistically characterized by the cumulative distribution function

00

71=0

where t is operating time projected into the future on the basis of no further fault 

correction; Sn<r is the nth convolution of S(-) with itself, and pn{t) is the probability 

mass function for n failures during time interval [ 0, t) (i.e., pn[t) — Pr{N(t )  =  n}).

The probability mass function pn(t) is a property of the failure-counting 

component of the model. This component models software failure occurrence in 

time as a stochastic process. The nature of software occurrence lends itself to being 

productively modeled as a Poisson process. Variants arise according to the form of 

the failure rate function. A piecewise-constant failure rate makes for a temporally 

homogeneous Poisson process, with negative exponentially distributed interfailure 

times. In  this case,
(A*)n exp(-At)

PnM =  n! •

This variant conforms to the Jelinsky-Moranda, Shooman and Musa models. A 

Bayesian updating technique can be used to revise the estimated failure rate as 

empirical data comes in.

I f  the failure rate is considered a nonrandom function of time, a nonhomo- 

geneous Poisson process results, conforming to the Goel-Okumoto NHPP, Schick- 

Wolverton and Wagner models. In this case,
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A gamma-distributed failure rate, with parameters a  and /3, forms a Polya process 

that is compatible with the Littlewood models:

Additional current and future software reliability models are accommodated 

through the weighted Poisson process variant, the most general:

1 f 00

Pn(<) =  — /  dA.n. Jq

The cumulative distribution function S ( i )  probabilistically characterizes the 

individual penalty cost X  and can be empirical or theoretical; continuous, discrete 

or mixed. Certain forms for 5 (2:) result in simple recurrence relations that facilitate 

calculations.

Now the failure-counting component will be developed in detail.

The Scenario
A computer program begins running at time epoch tq, measured in CPU  

seconds since an arbitrary time origin. At time epoch r^), the first software failure 

occurs. The waiting time to this first failure, in CPU seconds, is n  =  r ^  — t q .  At 

this point debugging personnel will isolate and remove the fault that caused the 

failure. The time spent on this repair activity will be ignored when calculating 

interfailure times. (This is not to say that the repair time is irrelevant when 

modeling availability, imperfect fault correction, or when assessing penalty cost.) 

Then the program is restarted and runs until the second software failure occurs, 

this at time epoch The second interfailure interval is T(2) -  CPU seconds 

long. This test-repair cycle will repeat itself until the program is released.

Suppose that i  software failures have already been observed. The time epochs 

T(i), 7 (2 ) , . . . ,  are known. However, the time epochs of the software failures yet- 

to-come are anybody’s guess. This uncertainty is reflected by the use of the random
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variables T(t+1),T(t+2), • • • for the future failure time epochs and T 1> i , T 1+ 2 , . . .  for 

the future interfailure intervals. Figure 14, after[LITT85], shows how the time 

notation relates to the concepts of past, present and future.

To view the situation as a stochastic process, one sees pictures of random input 

data being presented to the program. From the program’s perspective the input is 

randomly generated, in the sense that the program cannot exactly predict the input 

data sets. ( If  they were exactly predictable in content and order there would be no 

need for input data. [Reference tables read from a file for convenience do not count.]) 

Some of the input data sets will result in “failure” and the others in “success.” 

Furthermore, the computer may be embedded in a system or environment where a 

Joss event is possible (probability greater than zero). In severe cases the computer, 

in failing, is in a position to inflict damage or injury to proximate property or 

people. The amount of loss that will be incurred is generally unpredictable in 

advance, although it will be aggravated by the presence of hazards. While the 

occurrence time and severity of an individual software failure is a random event, 

propositions about software failures in the aggregate can be assigned probabilities 

through modeling techniques such as those presented here.

A Single Released Program Version

Since software failure is a phenomenon characterized by highly localized events 

distributed randomly in a time continuum, it will prove fruitful to view the evolution 

of failure occurrence through time as a point process, a type of stochastic process. 

Suppose that operation of a single program version begins at time to and is observed 

for a subsequent T  seconds. The continuum space of the point process is an interval 

{f : t 0 <  t <  to +  T }  of the real line. Each element t represents an instant of time 

during the observation period. A realization of the point process is a sequence 

of failure time epochs {t(i), t(2 ) , . . . , f(R)}, where n is the total number of software
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failures occurring during the observation period [to,to + T \ .  The failure times are 

ordered such that to <  t(i) <  t(2 ) <  <  t(n) < to +  T.

Several features of the failure point process are of particular interest: the 

numbers of failures occurring in fixed time intervals, the interfailure times, and the 

forward/backward recurrence times. Figure 15 shows a time-line illustration of the 

two major random variables of interest in the failure-counting component of the 

model. Figure 16 shows the meaning of forward and backward software recurrence 

times from an arbitrary time origin.

The Software Failure Counting Process

To probabilistically characterize the underlying probability laws governing the 

failure process it is necessary to consider

1 .) The probability distribution of T i ,

2.) The probability distribution of Tg for { T j .  =  tj and Tg =  tz},

etc.

Unfortunately this process is too general to work with[GlRA6 6 ]. So suppose for a 

single program version that the interfailure times { T i ,  T g ,. . . }  form a sequence of 

mutually s-independent nonnegative identically distributed random variables. This 

assumption suggests itself since after each failure the identical program version is 

restarted: The process is “self-renewing.” Assume the T , are continuous random 

variables with common Cdf F[t) .  Let F ^ ( t )  denote the Cdf of T ^ .  Because 

T i s  the sum of mutually s-independent and identically distributed random 

variables, F ^  is computed as the /c-fold convolution of F  with itself. For notational 

convenience, define
1, t >  0

0 , t <  0 .

To study the statistical characteristics of the numbers of failures occurring in fixed 

time intervals, it is helpful to introduce another stochastic process: the counting



www.manaraa.com

75

process associated with the failure point process. Consider the nonnegative integer- 

valued stochastic process w ),t >  0 ,(v 6  f l} . The counting process N (t,w ) is 

thus for each outcome w in the sample space fi a piecewise-constant function of 

t that will be denoted by N (t). The random variable N (t) gives the cumulative 

number of software failures that have occurred during the time interval [ 0 , i) .  

Figure 17 illustrates the realization of a typical software failure counting process 

N (f). Jumps occur at the time epochs - ■ ,T ( ra). At the beginning (t =  0),

the counting process N (t) will have the value zero. After the first software failure, 

N (t) will have the value one; after the second, two. And so on. More formally,

N (t) =  sup{t(fc) <  t}
k

with the proviso that N (t) =  0 if >  t. If u <  v, then N(u) — N(u) yields the 

number of software failures that have occurred during the time interval (u, u]. It is 

desired to find

Pn{t) =  P r{N (t) =  n},

the probability of n software failures occurring during time interval (0 ,t). Since 

N (t) =  n if and only if T (nj <  t <  T (n+1),

P r{N (t) =  re} =  Pr{T^nj <  t <

=  Pr{T(n) < t } ~  P r{T (n+1) <  t}

=  F ^ { t )  -  F (ri+1)(t).

The renewal function N( t )  =  E {N (i)} ,  met in the related research survey, is 

computed by the recurrence

N( t )  =  F(t )  +  f  N [ t  -  x) f (x )  dx. 
Jo
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The renewal density m(t)  is the s-expected number of software failures in a narrow 

interval near t:

w ith  limt^oo m(t) =  1 /E {T }[R o s s 7 0 ]. Let the Laplace transform of f {x)  be 

denoted £ /(-s):

Since the Laplace transform of the convolution of two functions is the product of 

their Laplace transforms,

This process is still too general to manipulate fruitfully, so the software failure 

counting process N (t) itself will be assumed to satisfy the following reasonable con

ditions (Poissonian assumptions leading via standard calculations to a temporally 

homogeneous Poisson distribution):

1.) The numbers of software failures occurring in disjoint time intervals are 

statistically independent;

=  f{t )  +  m(t) * f{t )

and the Laplace transform of m(x)  as £ m(s):

£ m (s )  =  £ f { s )  +  £ m { s ) £ f [ s )

or
,  M -  I /M  
£ " *w  -  I - £ , { , )

and
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2.) The probability of exactly one software failure occurring during the “small” 

time interval ( t , t  +  A t) is proportional to the length of that interval:

P r{N (t +  A t) -  N (t) =  1} =  AAt +  o(At)

where X is the failure rate— the average number of software failures per unit 

time;

3.) The probability of multiple software failures occurring during the interval 

(t, t +  A t) is negligible with respect to the length of that interval:

P r{N (t +  A t) -  N (t) >  1} =  o(At);

and

4.) Counting begins at time 0:

Pr{N (0) = 0 }  =  1.

(A function is described as o(h) if lim^_»o / ( ^ ) /^  — 0.) Figure 18 illustrates 

the probabilities associated with the various state transitions of the failure-counting 

process N (t). Condition (1) means that the number of failures in nonoverlapping 

intervals are s-independent random variables, regardless of the size of the intervals 

or their distance from each other. Basically, these additional assumptions rule out 

“chain reactions” among software failures; “trends” such as increasing, decreasing 

or oscillating; and multiple simultaneous failures. Note that the exclusion of trends 

applies to frozen code only. Reliability growth will result in a decreasing failure 

rate in the long run as faults are removed from successive versions of the program. 

The parameter A always has the dimension [time] 1. The probability po(t) of zero 

software failures in the time interval (0, t) can be derived from these assumptions 

as follows: The probability po(t +  dt) of zero software failures in the time interval 

(0, t +  dt) equals the probability of zero software failures in the time interval (0, t)
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times the probability of zero software failures in the time interval (t, A t), since 

both these events must occur. Since by assumption ( l)  these two events are s- 

independent, their probabilities are multiplied to obtain the probability po(t +  dt). 

From assumptions (2) and (3), we know that

p0(t +  A t) =  po(t)(l -  AAt).

Simplifying, we get
P0(t +  A t) -  po(t) =  _ A (t)

A t

As At approaches zero as a lim it, we are left with

=  - w -

Integrating both sides so as to solve this differential equation yields

lnpo(t) =  —At +  C.

At the boundary condition t =  0, the system is operating; hence t -  0, po(0) =  1, 

lnpo(t) =  0, and the constant of integration C  is seen to be zero, so

p0(t) =  exp (-A t).

The next step is to determine the more general probability pn{t) of n software 

failures in time interval (0 ,t). The probability pn{t +  dt) can occur in two ways: 

n software failures in time interval (0, t) followed by zero software failures in time 

interval ( t ,t  +  dt); or n -  1 software failures in time interval (0 ,t) followed by one 

software failure in time interval ( t ,t  +  dt). Any other combination requires more 

than one software failure to take place during (t ,t  +  dt), an event all but prohibited 

by assumption (3). Thus

p n { t  +  d t )  —  P n (£ )(l -  Adt) +  P n - l { t ) { ^ d t )

=  P n ( t )  Adt[pn(£) Pn—l]



www.manaraa.com

81

This recurrence can be rewritten

(At)” exp (—At)
P“ (‘ ) =  ----------n\---------- '

Figure 19 illustrates the probability mass functions for various values of A when 

t =  1. When n =  0, the formula gives exp (-A t), which agrees with our previous 

result.

The s-expected value can be computed as

E{NW} = X > ^ f ^
n,—0
^  (At)n exp(-A t)

-  2 ^ n - ]
n = l

w ^  (At)re 1 exp(—At)

&  ( » - D '
=  At.

The last simplification is made possible by the requirement that the probabil

ities for all n must add up to one.

This type of counting process would come under the classification of a tem

porally homogeneous Poisson process.

Besides probabilistically characterizing the cumulative number of software 

failures, another objective of the failure-counting component of the model is to prob

abilistically characterize the future interfailure intervals T 1' , T , - + 1, T , > 2 , . . . ,  given a 

sequence of observed past interfailure intervals £3 , • • •, t f - i -  When a program

version is released, its code becomes frozen. Thus it makes sense to speak of a 

constant failure rate A(f) =  A during an operational period. The value of A cannot 

be deduced theoretically but must be determined empirically through the use of 

statistical techniques. Since the time origin is arbitrary, the preceding formula will 

apply to the number of software failures falling in any intervals of a given length
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t >  0. and the Cdf will be

WI'M i \ ty
C df{N (t)|A } =  5 3 e x p ( -A i)1- ^ - ,  n =  0 ,1 ,2 , . . .

t= 0

The expected value is

E {N (t)}  =  exp (-A t) =  tA exp (-A t) 1 1 +  At +  +  - g j -  +  ""
j=o

The infinite series has value exp(Af), so E {N (t)}  — At.

The mean of the distribution is /Li =  E {N (t)}  =  At and, interestingly, the 

variance Var{N (t)>  =  At also. The failure intensity A >  0 indicates the average 

number of failures in a unit time interval. Failure occurrence can be seen to depend 

on both the length of time exposure t and the failure intensity A.

Interfailure Tim es

The constant failure rate leads to an interfailure time random variable T  that 

is negative exponentially distributed because the event of zero software failures in 

time t is equivalent to the event that the waiting time to the first event is greater 

than t.

P r{T  >  t}  =  Pr{zero failures in time t}  =  po(f) =  exp (-A i).

The cumulative distribution function is

C d f{T } =  P r{T  < 0  =  1 -  exp (-A i).

And the probability density function is

p d f{T } = ----- ^   ̂ =  Aexp(—At).

The reliability function is

i2 (t) =  1 -  C d f{T } =  exp (—At).
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Thus the Poisson probability law and the negative exponential probability law 

both describe the same failure process but from the perspectives of two different 

random variables, T  and N ( t ) . The negative exponential distribution can also 

be demonstrated through a limit argument: At each “instant A f , 2A i, 3A t , . . . ,  a 

software failure can either occur or not occur. Suppose the probability of failure at 

each instant is p. Then

P r{T i <  kAt }  =  1 -  (1 -  p)fc

because the event “T  <  k A t” means that a software failure occurred at at least one 

of the k instants. Now let A i -» 0. As the size of the moments shrink, so too must 

p, but in such a way that the failure rate A =  p /(A i)  remains fixed. In the lim it as 

& -» oo, A i -» 0 and kA t -> i >  0, the formula becomes

P r{T i <  i}  =  Hm [ l -  (1 -  A A t)*7
A t —>0 L

=  1 -  exp (—Ai), 

the negative exponential Cdf. See[FELL68, BUSH55].

A theoretical argument for the use of this type of Poisson process is that the 

superposition of the points of many s-independent sparse (not necessarily Poisson) 

point processes converges to a Poisson process [ C INL7 2 ]. In fact, “It  has been 

demonstrated by many authors that the number of arbitrary renewal processes 

needed to achieve the Poisson process approximately, is only about five or six 

[MURT74].” Likewise a Poisson process can be decomposed into Poisson processes. 

This decomposition/superposition property reflects the modular structure of soft

ware: The failure law for the overall program must be the same as the failure rate 

governing each module. Figure 20 illustrates the decomposition and superposition 

of Poisson processes. Information theoretic arguments regarding entropy can also 

be adduced[G ROS 74].
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Software reliability researcher Musa has performed and reviewed a number of 

studies, and his conclusion is, “Empirical evidence indicates that the [failure inter

val] independence and [negative] exponential distribution assumptions are soundly 

based[MUSA84].” Even Littlewood, while criticizing many aspects of current mod

els, concedes the validity of the conditional negative exponential pdf above.

Distributional Properties

For any positive numbers a and b, the negative exponential distribution obeys

the memoryless property

P , ( T > .  +  6 | T > 6 } a M l 2 f ± ^

_  exp[-A (a +  6)] 
exp(-Ao)

=  exp(—A6) =  P r{T  >  b}.

This implies that the forward and backward recurrence times are both distributed 

identically to the interfailure times.

The parameterization 6 — A-1 gives

pdf{T |0} =  9~l e x p H /0 ) ,  t >  0.

The Cdf is

C df{T |A } =  f  Aexp(—At) dx =  1 -  exp(—At), t >  0.
Jo

The mean of T  (the M T T F ) is

roo y 00

M T T F  =  /  S f{T |A} dt =  I exp ( -A t)  
Jo Jo

dt =  exp(- A,)
0

— I  /  X — 0.

The variance is V a r{T } =  fl2. The Laplace transform is £ r(f) =  A /(r +  A). 

The fth time-to-failure percentile is

_  ln (l — .Oil)
T‘ =  =Â '
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The median time-to-failure is
ln0.5

The probability distribution of the time epoch T ( n )  =  T t +  T 2 +  • • • +  T n can be 

obtained as follows: Let Fn[t) =  P r{T (tt) <  (}. Then 1 — Fn{t) =  P r{T (n) >  t}  — 

P r{N (t) <  n}; consequently

i_A,()=gî«Üsiz^.
fc=0

Differentiation with respect to t produces

m  =  — ^ ( A t r ^ e x p l - A t ) ,  t >  0.
(n -  IJl

This probability law would be classified as a special n-stage Erlang distribution and 

always arises from the sum of n s-independent and identically distributed negative 

exponential random variables.

Given that n >  1 software failures have occurred in an interval [0 ,t], the 

n times <  f(2) <  ••• <  i(„) at which failures occurred (when unordered) are 

uniformly distributed[FELL68],

The distribution is bimodal when m i =  At -  1 is an integer, in which case the 

modes are at m i =  At — 1 and m 2 — m i +  1 =  At. The distribution is unimodal 

when m i =  At — 1 is nonintegral; in this case the mode is m =  [A t].

Delivered Failure Intensities

The failure intensity during an operational period will depend on the testing 

activity that took place prior to release.

So far the analysis has centered on the characteristics of a single program 

version. The program version was considered to exhibit some particular failure rate 

A. As the program evolves as the result of fault correction, the failure rate will



www.manaraa.com

87

co
d

LL

Z  lo

CMd

.o
u.

OC in 
Q . CMT“
z  6

o

o
in



www.manaraa.com

88

vary. Each version will have its own failure rate. In the long run, the failure rate 

should drop, as the hoped-for phenomenon of reliability growth occurs.

The failure intensity A* is the failure rate of the ith  program version. This 

program version reflects the correction of (i — 1) faults. The failure intensity can be 

estimated on the basis of the interfailure times n , r2 , . . . ,  or the failure epochs 

r(i)> r(2)> -  -, f ( i - i )  or by information about the static properties of the program. The 

estimation can be subjective. The estimation can come from empirically studying 

the failure behavior (i.e., statistically). The conditional probability density function 

of the zth interfailure interval is

pdf{T i|A {} =  A, exp ( Ait j)

The failure-counting component of the model is compatible with existing 

software reliability models because it can borrow their failure intensity formulations. 

In these models the failure rate is computed from the history of interfailure times 

or failure-occurrence times, plus sometimes historical or subjective information. 

Because the failure-counting component does not concern itself with how the failure 

intensity is arrived at, it escapes the controversy directed at those formulations. As 

the formulations improve, the failure-counting component will also.

As simple examples, under the Jelinsky-Moranda formulation the failure in

tensities would be

A, =  tf[JV(oo)- ( » - ! ) ] ,  

and under the Shooman formulation they would be

A. =  *  W ° ° )  -  (< - 1 )

where iV(oo) is the initial number of faults in the program (constant), i is the num

ber of faults detected and corrected, I  is the number of machine-level instructions 

in the program (constant), and i f  is a proportionality constant.
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Bayesian Updating of Failure Intensity

Regardless of whether the failure intensity estimate for a program version 

is obtained from a software reliability model or some other means, once the pro

gram version goes into operational use, empirical data will become available. A 

chronological log of software failures can be kept, and this information can be used 

to update the best estimate of the actual failure intensity. (Remember, program 

version =  frozen code.) The uncertainty about the actual value of the underlying 

failure rate A can be reflected by employing an assumed gamma prior distribution. 

Figure 21 shows the shapes of two Bayesian prior distributions for the failure rate A. 

These two gamma distributions differ only in their standard deviations, reflecting 

the amount of uncertainty present.

P r{A  =  A} =  ^  exp(-/?A){ 0 \ ) a- l d \ ,  0 <  A <  oo.

This distribution is convenient because it ranges over the entire positive axis (0 ,oo].

The mean a / 0  can be set to the latest best estimate. The degree of uncertainty

is reflected by the variance a / 0 2. Just one gamma distribution has a preassigned 

mean and variance. The smaller the variance, the greater the s-reliability of the 

estimate. The distribution of the number of software failures will follow the Poisson 

law with mean At:

P r{N (t) =  n|A <  A <  A +  dX}

_  exp (-A t)(A t)n' 
n!

By Bayes’ rule,

Pr{A <  A <  A +  dA|N(t) =  n)

_  Pr{A <  A <  A +  d A }P r{N (t) =  re|A <  A <  A +  d \ }
~  SZo  Pr{A <  A <  A +  dA} P r{N (t) =  n|A <  A <  A +  dX}'

obtaining

Pr{A <  A <  A +  dA} =  ^  r exp(-R A )(B A )"4~ 1dA, 0 <  A <  oo
1 (A)
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where

A — a  +  n

and

B =  (3 +  t.

All this ink has led to a simple recurrence: The best estimate of the underlying 

failure rate A is updated after each failure from a/13 to (a  +  n ) /{(3 +  t), with the 

distribution remaining gamma.

Example

The purpose of this example is to demonstrate the Bayesian failure-rate updat

ing technique using data from a real project. The system from which the Appendix 

A data[RADA81] was gathered consisted of a pair of real-time interrupt-driven 

command and control (C2) programs totaling 24,000 lines of assembly source code, 

and a time critical mathematical program consisting of 39,000 FO R TR A N  source 

lines and 2,000 assembly-language source lines. Development spanned a 3-1/2-year 

period. The development practices included top-down program design, use of a 

modified programmer team concept, and use of a program support library.

The major software tools used for IV &  V  were an interpretive computer simu

lator (ICS) that emulated the on-board flight computer at the machine-instruction 

level, and a six-degrees-of-freedom environment simulator that modeled mechanical, 

aerodynamic, gravitational, and other physical effects.

Some 249 failures occurred, each resulting in an anomaly report. Severities 

were distributed as 21% high ( “S” ), 48% medium ( “2”), and 30% low ( 1 ). Fig

ure 22 shows a plot of the running best estimate of the failure rate. The original 

estimate was X =  1.75, and the latest revised best estimate turned out to be about 

A =  1.6. The recurrence rule is: Let
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then
ûj +  1

where is the tth interfailure time.

Failure-Counting Component: Variants

The basic failure-counting component assumes the failure rate A to be constant

for a single program version. The formulation of the failure can be conveniently

Moranda, Shooman, Schick-Wolverton and Musa models. The failure-counting 

component can also accommodate a failure rate borrowed from other major time- 

domain models. For the Littlewood models, a gamma-distributed A is used. For 

the Goel-Okumoto NHPP, Schick-Wolverton and Wagner models, a time-dependent 

failure rate function A(r) is used.

Mixing via Gamma Structure Function

In the Bayesian updating technique, the failure rate parameter A had a fixed 

but unknown value. Quite another idea is to let A itself be a gamma-distributed 

random variable with pdf

borrowed from homogeneous-Poisson-process-based models such as the Jelinsky-

A >  0, a  >  0,/3 >  0 

A <  0.

Starting out with
poo

P n ( t )  =  /  Pn] A ( * ) / ( * )
JO

we have
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Using the recurrence relation F (a  +  1) =  o-F (a) and the expansion

(x — 1) • • • (x — n +  l )

the pmf can be rewritten

P Y

n )  n!

j + t i

This turns out to be for each t a negative binomial distribution with parameters

0
h =  a ’ <' =  j V t

The mean of this distribution is

H =  E {N (t)}  =

and the variance is

<r2 =  V a r{N (t)}  =  +  0  .

This new process would come under the classification of a Polya process and is 

distinguished from the Poisson process in that its variance exceeds its mean. Recall 

that for a Poisson process the mean and variance are equal. Figure 23 shows the 

shapes of typical negative binomial distributions. Figure 24 shows a comparison 

between the realizations of a Poisson process and a Polya process. The form of the 

latter distribution is

p‘(") = (n + t ” 1)(^Tfe) ( ^ )  ’
which reduces to the Poisson formula when n —> oo.

This variation conforms to the Littewood models.

Temporal Nonhomogeneity

Another variant is to assume as in the Goel-Okumoto NHPP model that A(r) 

is a bounded, measurable (nonrandom) function of time, with the probability of
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software failure in the “small” time interval (r , r +  A t ) being A(r) dr +  o(A t ). This 

results in

P n { t )  =
f o  H u ) d u

nl
exp — I  X(u) du 

Jo
n =  0 ,1 ,2 ,.

By the time scale transformation

r' =  I  A(u) du, 
Jo

this distribution is reduced to the simple case

pn(r) =  ( r c ! ) ~ V n e x p (-r ) ,  n =  0 , 1 , 2 , . . . ,

where the lengths of time intervals are measured by the s-expected numbers of 

software failures in those intervals.

This variation conforms to the Goel-Okumoto NHPP, SChick-Wolverton and 

Wagner models.

Arbitrary Failure Rate Distribution

A very general case is where A is a random variable but is arbitrarily dis

tributed. When A has an arbitrary distribution, the probability of observing n  

software failures is the integral

i r 00
P n { t )  =  — exp (-A t)(A t)n/ t|A(A) dA. 

n. Jo

Note that the pdf for this “weighted” Poisson process must be reinterpreted as a 

conditional distribution. Interesting applications of this type of distribution can be 

found in[BATE52], [LUND40],[CHIANG66].

This generalization is used for all other current and future models in which 

A is considered a random variable. Unlike the specific case in which A is gamma- 

distributed, though, a closed-form analytical solution of the integral might not exist, 

and numerical quadrature would have to be resorted to.
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Failure Counting Process Estimation

In  addition to a probabilistic model, a complete prediction system[LlTT85] 

also requires a statistical inference procedure for estimating the unknown param

eters in the model, and a prediction procedure. Poor performance of some of the 

early software reliability models might be improved upon through use of more 

sophisticated parameter estimation methods[FORM77].

An estimator is a function of a sample that furnishes an estimate of a dis

tributional parameter. The principal of maximum likelihood, which is employed 

in all the examples in this dissertation, provides a powerful method for obtaining 

estimators. Under general conditions these estimators are known to exhibit very 

desirable properties. The method selects those parameter values that result in a 

probability density/ mass function that is most likely to have produced the observed 

data.

Let the observed failure times be characterized by the random variables 

T l,T2, ... , T„. Let the actual values be r i , r 2 , . . .  , rn. The probability that Tt =  r t- 

is dependent on the value of a parameter 6 and so its probability mass function will 

be written /(%;#).  Because the T /s  are mutually s-independent, their joint pmf 

can be written
n

L (r i,T 2 , . . . , r n; 0 ) =
1= 1

The function L  is called the likelihood function. To find the value of 0 for which 

L  is maximized, the partial derivative dLjdO is taken and set to zero. Often at 

this point the logarithm of L  is first taken to simplify the differentiation. The root 

of the equation then found by means of an iterative computational procedure, or 

graphically.

That value of 0 for which L  (or log L)  attains its highest value, is called the 

maximum likelihood estimator (M LE) for the parameter 0.
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For instance, the Jelinsky-Moranda failure rate formulation, as introduced in 

the Survey of Related Research, looks like this:

A(t, A) =  KN(oo)  exp(—-KY).

The two unknown parameters are the inherent number of errors iV(oo) and the 

proportionality constant K.  When the principle of maximum likelihood is applied 

to the parameters in that failure rate formulation, the following equation[JELl71] 

is obtained for finding an estimate iV(oo) of the initial fault content N(oo):

A  i rcEL, n

"  iV(oo) -  ( i  -  1) IV(oo) ^21=1 rt -  “  1)r*

The maximum likelihood estimator K  for proportionality constant K  is then ob

tained as
»  n______

= iv(oo) EîLi Ti -  E"=i(* -
The failure rate At- can now be estimated as

\ i  =  k [ N{ < x > ) - { i - l ) \ .

The estimated M T T F  is 1/A{.
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CHAPTER 5 
INCORPORATING PENALTY COSTS

Now that the failure-counting component of the model is complete, attention 

will now turn to the penalty cost component and how it will be incorporated 

into the model. Both the failure-counting component and penalty-cost component 

concern themselves with uncertainty: For the former, the uncertainty is regarding 

the frequency and occurrence-times of software failure; for the latter the uncertainty 

is regarding the severity of individual software failures.

Penalty Cost Component
Penalty cost is a quantitative measure of the severity of loss resulting from 

a software failure. For the purposes of mathematical modeling, penalty cost can 

be treated simply as a number. The loss can generally be decomposed into several 

possible categories[BROW80]:

1.) Damage to, destruction of property;

2.) Injury, fatality of persons;

3.) Community, environmental damage;

4.) Financial effects (e.g., legal liability, lost revenue);

5.) Psychological effects;

6.) Resources, effort to isolate and correct the fault.

I t  may seem distasteful or even immoral to put a value on human life and 

suffering (as for example is done in ANSI Standard Z16.1[AM ER67]). I f  some of 

these categories are deemed inconvertible to a common measurement, the penalty 

cost can be recorded as a finite-dimensional random vector rather than a scalar,

99
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as will be shown. Efforts have been made to produce a taxonomical classification 

scheme and rating scale for the effects of software failures[D a n a 74].

The assumption will be made that future penalty costs will be described by 

the same random variable as past penalty costs. That is, causal influences in the 

future will be the same as those in the past: The random sequence is assumed 

stationary, which means that samples from a sequence of sufficiently long duration 

are statistically representative of the whole.

Let the random variable Xy be the penalty cost associated with the software 

failure occurring at time T ^ . The penalty costs arising from the software failures 

at times T ^ ), T (2) , . . .  form a random sequence

{Xi, i =  1,2,...}

wherein X i, X 2, are s-independent and identically distributed nonnegative ran

dom variables. The Xy’s are not all zero with probability one and follow the common 

cumulative distribution function

S{x) =  C d f{X }.

The existence of S(x) is axiomatic and is supposed s-independent of the time the 

failure occurs and any information about previous failures. Thus N (t) and the 

penalty-cost sequence {X ,}  are s-independent of each other. For concreteness, 

suppose that S(x) is such that for some k its fcth convolution has an absolutely 

continuous component (that is, at least one moment exists) and that E {X {} >  0.

The outcome in a particular case is a sequence of ordered pairs of software fail

ure time epochs and associated penalty costs. Each realization tv =  { ( t ^ , X j ) , j  — 

1 ,2 , . . . }  represents the actual development of the failure history in a particular 

case. The aggregate penalty cost process {Z (t) ,0  < t <  oo}, totals the sum of the 

penalty costs incurred over the interval (0, t):

Z (i)  =  X i +  X 2 +  • • • +  XN(t), £ >  0.
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In  words, Z(t)  is a random sum of random variables. The process will be associated 

with well-defined probabilities induced by the measures of the variables u.  The 

restricted functional space of Z(t) consists of step-functions with discontinuity 

points ty j. The process Z (t) describes the evolution of cumulative failure effects, 

recognizing both the random number of failures N (t) in time and the random nature 

of the penalty costs.

Penalty Cost Distributions

The penalty cost distribution can be either discrete or continuous, or even a 

mixture of both (see Figure 25). For penalty costs values based on low-resolution 

severity ratings, use of an empirical distribution[HAYS84 ] suggests itself. An em

pirical distribution simply assigns a probability mass of 1/ n to each of the n sample 

points. A problem: If  the scale is open-ended then the right tail of the distribution 

is not modeled. For example if the greatest severity so far observed is 9, we have 

no way of assigning a probability to severities of 10, 11, 12 and so on. Furthermore, 

even if the scale is closed-ended, for example 1—15, no natural method of interpola

tion between data points exists: I f  there were a lot of 4 ’s and a lot of 6 s but no 5 s, 

it is not clear what probability should be assigned to 5 (zero seems a bit harsh).

Use of continuous theoretical distributions such as normal, negative exponen

tial, gamma and Pareto can avoid these problems and do offer the advantage of 

well-developed statistical inference techniques.

Distribution of Aggregate Penalty Costs

Figure 26 shows the realization of a typical aggregate penalty cost process 

Z(t). Two approaches will be considered: deterministic and stochastic. The 

deterministic approach is rather simplistic, while the stochastic approach is much 

more comprehensive.
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Deterministic Approach

The frequency of software failure can be summarized by

Total number of software failures 
Average Frequency Observed time exposure

and the severity by

Aggregate penalty cost 
Average Severity — rpotaj number 0f software failures

Combining the two averages yields 

Avg. Penalty Cost =  Avg. Frequency x Avg. Severity x Future Time Exposure.

Or, in symbols,

E {Z(£)} =  E j ' E {X } • t,

where r  is the cumulative debugging time and t is future operational time. This 

average aggregate penalty cost can be considered the “deterministic solution to 

the problem, in the sense that it yields a single answer. However, the average 

aggregate penalty cost is in reality only a mean about which the actual aggregate 

penalty cost figure will vary. The actual figure could range all the way from zero 

to some very high number. There could be, for example, two aggregate penalty 

cost distributions, both of which have the same average, yet one situation may be 

“riskier” because the actual values would tend to be more widely dispersed about 

that average value. (There is an old story about a statistician who drowned in 

water of average depth three feet... .) So the average value, while informative, by 

far does not tell the whole story: It  is necessary to work with the full distribution. 

From the distribution a number of other features of the random variable can be 

computed to supplement the average, such as variance, skewness, kurtosis, higher 

moments, percentiles, etc. An additional risk also exists: Due to sampling error, 

the average value may not equal the true mean of the penalty cost distribution.
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Stochastic Approach

The deterministic approach replaced random variables by their average values. 

This machination abstracted out the stochasticity. Now we will take the more 

comprehensive approach of deriving the actual distribution of the aggregate penalty 

cost. It is desired to find the probability distribution of the aggregate penalty cost 

The two layers of stochastic variation— failure occurrence and penalty cost— consti

tute a compound stochastic process. The Cdf of the aggregate penalty cost will be 

denoted F(z , t ) .  Figure 27 illustrates the aggregate penalty cost process Z(t). The 

Cdf can be obtained by exhaustively enumerating all possibilities leading to the 

occurrence of the event {Z(£) <  z}.  The event can occur in the following mutually 

exclusive ways (in the manner of, e.g.,[CRAM54]):

(i) In the time interval no software failure occurs;

(ii) 1 software failure occurs and its penalty cost is < 2 ;

(iii) 2 software failures occur and the total penalty cost is <  2 ;

(iv) 3 software failures occur and the total penalty cost is <  2 ;

and so on.

Let Sn{z) be the conditional aggregate penalty cost Cdf given that n software 

failures have occurred:

5„(2) =  C d f{Z (0 |N (0  = » } •

From the multiplication and addition rules of probability, it follows that if

E {Z (t)} <  0 0 ,

then
00

F(z , t )  =  ^  P r{N (t) =  n }S „(2 ).
ra=0
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According to probability calculus, the Cdf of the sum of mutually s-independent 

random variables is the convolution of their respective Cdf s. Sn(2 ) is thus the nth  

convolution— n being a fixed number— of S (2 ) with itself:

Sn(2 ) =  f  Sn- i ( 2  -  w)dS(w)  =  * S(z) =  Sn'(z ) ,  n >  1,
Jo

and the formula for the Cdf of the aggregate penalty cost, after conditioning on the 

values of N (t) , becomes

00

F (z ,t )  =  ^ P P r{N (t )  =  n }S n* ( 2 ).
71=0

The basis of the recurrence is

f 0, 2  <  0

s 0 , w = U  , > 0 .

Also, S'1* (2 ) =  5 (2 ).

Distributional Properties

The s-expected value of the aggregate penalty cost Z (t) for the time interval 

(0, i) will be

E {Z (t)>  =  E {N (t)}E {X > ,

because of the s-independence of the failure occurrence and penalty costs. The 

variance is easily shown to be

V a r{Z (f)}  =  E {N (t)}V a r{X >  +  V a r{N (« )}[E {X }]2.

Now we can combine a specifically distributed failure-counting component with the 

penalty-cost component.
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Homogeneous Poisson Failure-Counting Component

The development of the failure-counting component in the previous chapter 

emphasized the temporally homogeneous Poisson process. In this case, the aggre

gate penalty cost distribution

00

F{z , t )  =  ^ P r { N ( t )  =  n } S n*{z)
n = 0

will be

F{z , t )  =  ^ e x p ( - A t ) ^ j - S n*(z).
n=0

From the previous results it follows that the mean of this distribution is

E {Z (f)}  =  A tE{X}.

The variance is

Var{Z(t)>  =  At(Var{X> +  [E {X }]2) =  A tE{X2} 

because of the identity V a r{X } =  E {X 2} — [E {X }]2 [M END81].

Derivation by Severity Class

When penalty cost is measured in discrete units, the aggregate penalty-cost 

distribution admits of an alternate derivation. Instead of software failures occurring 

randomly in time, suppose that “penalty cost units” occur randomly in time. Recall 

that the probability of more than one software failure event during the time interval 

(0, t) was assumed to be o( A t ) . However, we will make no corresponding assumption 

for penalty cost units. Let

Pr{z-unit aggregate penalty cost in (t ,t  +  A t)}

=  AjAt +  o (A t), t =  l ,2 ,  . . . ,m
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with m

53 ^
t=i

A software failure is considered to have occurred whenever one or more simultaneous 

penalty cost units appear. The number of simultaneous penalty cost units at 

that moment is the penalty cost of that software failure. Each individual stream 

of occurrence of the same penalty cost batch size i forms its own temporally 

homogeneous Poisson process with failure rate parameter A*. The aggregate penalty 

process is now

1= 1

with probability mass function

pr (t) =  P r{r  penalty cost units in (0, t)}

=  £ e x p ( - A ( ) ^ >
1 = 0

where =  Pr{z occurrences give grand total of r } , the probability associated 

with the t'-fold convolution of the batch-size probabilities {At/A}. This is the 

aggregate penalty cost desired.

Thus for discrete penalty costs, the aggregate penalty cost process can be 

viewed either as a single stream with a varying batch size (the original derivation), 

or as the sum of multiple constant-batch-size streams; both produce the same 

aggregate penalty cost distribution.

Pôlya Variation
In the case where the failure rate is gamma-distributed, the incidence of 

software failures was shown to be negative binomially distributed. The distribution 

of aggregate penalty cost in this variation will be
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The mean will be

The variance will be

The Pôlya variation is the one that conforms to the Littlewood models’ failure 

rate formulations.

Some Examples

Simple P o isson/U nit Penalty Costs

Suppose that N (t) has a Poisson distribution with time unit chosen such that 

A =  1. As a very simple example, the case in which the penalty cost for each 

software failure is 1, that "is,

0,x < 1

will be worked out. In  this case

r x  f  0,
S 2*{z) =  J  S u (z -  t) dS(t)  =  S u {z — 1) =  |   ̂

and then for n =  3 ,4 , . . . ,

(0, z <  n

1, z > n .

z < 2  

z > 2 .

fc=0 n=0

which will be recognized as the Cdf of the failure-counting process N (t). The model 

has been reduced to that of its failure-counting component. If  At is reasonably large 

(>  10), the normal approximation

P r{N (t) <  n} ~  $ [(n  -  A t)/V X t]
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can be used. The symbol stands for the Cdf of the standard normal distribu

tion, a limiting distribution discussed in more detail in the next chapter. Figure 28 

illustrates the normal approximation to the Poisson distribution.

Figure lastfigure shows the Cdf and pdf of the standard normal distribution.

Simple Poisson/Simple Exponential Penalty Costs

Suppose that the penalty costs are distributed according to a negative expo

nential distribution with penalty cost unit chosen such that the intensity 1. That

which is the standard incomplete gamma function T(z,  n) [BEEK84]. The value can 

be approximated by the formula[KHAM65]

(When z >  280, the asymptotic complete gamma function r(n), met before, can 

be substituted.)

[ 1 -  e x p (-x ), x >  0.
Assume that the interfailure time is chosen such that the failure rate A =  1. Then

r oo rz
S 2*{z) =  /  S u {z - t ) S { t ) d t  =  / {1 -  e x p [-(x  -  t)]} e x p (-t)  dt

Jo Jo

By the principle of mathematical induction,

zn exp (—2 ) y L _________________
r(n) n(n  +  1) • • • (n + j)

"Robust" Programs

Kopetz has defined[KOPE79] a robust program as one in which the penalty 

cost C of a software failure is inversely related to its probability of occurrence p:
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The simplest type of probability distribution that provides this property is the 

negative exponential

S(z) =  1 -  e xp (-cz ), z >  0.

This results in a recurrence relation for calculating Sk*(z):

S k*(z) =  1 -  exp (-cx )
i= 0

=  S ^ -1 ^*(z) — exp (-cz )(cz )fc 1/(fc -  1)!

An even more compact form is again in terms of the standard incomplete gamma 

function:

S^z) = r(cz,fc).

The main objection to the use of the negative exponential distribution is that 

its right tail vanishes rapidly. This can be remedied through use of heavier-tailed 

distributions such as the Pareto (which converges very slowly) and the lognormal 

(in between negative exponential and Pareto). Figure 30 shows the shape of the 

lognormal distribution with standard pdf

(In t — nY

/M  = W l ? exp 2ct2
t >  0

The random variable X  has a lognormal distribution if Y =  In X  has a normal 

distribution. In  the pdf, ^  and a  are the parameters (mean and standard deviation) 

of In X . The exponential and lognormal distributions would tend to underestimate 

the risks of excessive penalty costs, while the Pareto [BEARS 4] models “dangerous” 

systems. Figure 31, after[BEAR84], shows a comparison of the negative exponential, 

lognormal and Pareto probability densities on a double logarithmic scale.

Example: Parameter Estimation for Robust Program

Here is an example of param eter estimation from a hypothetical robust pro

gram. In  this example the failure times are due to M usa[M usA79B], and the penalty
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costs are negative exponential random deviates. The required parameters N(oo)  

and K  will be estimated using the technique of maximum likelihood, described in 

the previous chapter. The key equation for calculating the estimate N(oo)  is

y  1
N(oo)  E L i  h  -  !) '

From the failure data detailed in Appendix B,

136

=  88,683
1=1

and
136

-  1)t< =  8 ,694,899
i= i

yielding
(136)(88,683) _  y -  1

iV(oo)(88,683) -  8,694,899 ~  “  JV(oo) -  [i -  1)

or
12,060,888_______

88,683iV(oo) -  8,694,899  

1 1 1 
_  JV(oo) iV(oo) -  1 ”  iV(oo) -  136

This equation was solved on a computer and found to be satisfied for N(oo)  =  142.

For this value, the left-hand side is 3.094053 and the right-hand side is 3.086560.

The maximum likelihood estimator of K  is

— _____________ Hi__________________________________

^ H E L iT , -E L i (^ - ih '
Substituting the numbers gives

136
  --------------------   =  0.000035 .
142(88,683) -  8694899

The failure rate is

À =  [iV(oo) — (n — l)]Â"
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=  [142 -  (136 -  1) [0.000035

118

=  0.000245.

The required parameter A for the failure-counting component has now been esti

mated. Now we turn to the penalty cost component. The distribution in that 

component is

S(x)  =  1 -  exp(—cz).

The unknown parameter is c. Since this is a negative exponential distribution, c is 

the intensity— the reciprocal of the mean. For the penalty cost, the mean can be 

estimated by the arithmetic average of the penalty cost values { i i } .

y ' 136 x .

E {X }  =  ^ t=1 ' =  27.769853 
1 J 136

and the parameter c to S (x) is

1
c —

E{X>
=  0.036010.

Now the aggregate penalty cost cumulative distribution function can be com

puted from the formula

F(z , t )  =  2 2  exp (-A t) (z)
n=0

= y^exp(-At)^ j  r(cg,n).
n = 0

The summation need not go up to infinity, of course, as the series will converge. 

The result would be a table of Cdf values, from which pdf values could also be 

calculated. Examples of Cdf and pdf values appear in the worked-out example in 

the next chapter.
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Use of Auxiliary Functions
Computations can be simplified by using certain operational functions of 

probability calculus— the probability generating function and the characteristic 

function.

Probability Generating Functions

The probability generating function (pgf) for the integer-valued random vari

able X  is given by
00

h(s) =  E{sX > =  V  P r{X  =  k}sk, |s| <  1. 
fc=0

Suppose that the penalty costs X 1,X 2, . . .  are discrete random variables with  

common pmf {qj}.  Then the pmf of the aggregate penalty cost

Z(t) =  X i +  X2 H +  Xm(()

is given by
00

r j  =  P r{Z (0  = j }  =  5 3  P r{Z (t) =  j |N ( t )  =  n} P r{N (t) =  n}.
n=0

Since the Xjt and N (t) are mutually s-independent,
OO

rj  =  ^  P r{N (t) =  n } P r{Z (t) =  j }
n —O

The distribution of Z (t) is given by the n-fold convolution of { q j } with itself. Thus
OO

i rj }  =
n=0

The pgf of Z (i) is
00 00

M 5) =  '5 2 '5 2 PnM n* sJ
j =0 n=0 
oo oo

n=0 j =0
oo

=  5 3 Pri,lx (5) =
n=0



www.manaraa.com

120

co
d

CM
d

o
CO00

d



www.manaraa.com

121

After multiplying out and collecting terms, the probability r, is found as the 

coefficient of s3 in h^.

The pgf for the Poisson distribution with mean At is

>wi,)w  =  Ê ” p(~ y (M)̂

=  exP( A < ) f : ^ f
j'=0

=  exp (—At) exp(Ais)

=  exp[At(s — 1)].

Figure 32 shows the shape of the probability-generating function for a Poisson 

random variable. It  then follows that

hz [s) =  exp{At[/ix (s) -  1]}.

In the Polya case

and

hz (s)

-P

-P

I f  the bracketed expression is negative, the pgf may not exist.

Example: Equispaced. Equiprobable Penalty Costs

When the possible penalty cost values are equally spaced, e.g., 1 ,2 ,3 ,4 ,5 ,6 ,7 , 

and they have equal probability of being realized (in this example, 1 /7 ), the problem 

is similar to a classic dice problem tackled by De Moivre. He was interested

“To find how many Chances there are upon any number of Dice, each of them of the 
same number of Faces, to throw any given number of points.[DEMO 1756]”
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That is, he wanted to find the probability distribution of the total number of 

spots that would appear after throwing a certain number of dice. De Moivre used 

a property of probability-generating functions (pgf’s) to arrive at his answer.

Let each penalty cost X, take on values in the range 1 ,2 , . . .  ,a  and let the pmf

Pfc =  P r{X  =  k}  =  1/a, fc =  l , 2 , . . . .

The pgf for X  is defined as

a
pgf{X } =  E{sx > =

k=l

The pgf exists for |s| <  1. It  uniquely determines the distribution of the random 

variable X[FlSZ63],

Suppose X  and Y are s-independent random variables. Then for any s, s *  

and sY are also s-independent random variables. This means that

^X+y (5) =  E{sXsY } =  E { sX }E { sY}

and so

^ x + y (5) =  ^ x W  ' /i y (5)>

an important property of pgf’s. Let the aggregate penalty cost 2% =  X i +  Xg +

• • • +  X n have probability generating function hz (s). In common with the Laplace 

transform, the pgf of the sum of a set of mutually s-independent random variables 

is the product of their respective pgf’s. In  particular, the pgf of the sum of n 

s-independent and identically distributed random variables is their common pgf 

raised to the nth power. Thus

h z n = ( h x ) n =
s ( l - s a)

. °(1  ~  s) .
Is! <  1.
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The probability that Z n =  j  is found as the coefficient of in by definition of 

pgf. By the binomial expansion,

( -1 )  f n \  f j  - a k - I
P r { Z „ = j }  =  i ; —  w v  n _ 1

k—0
The aggregate penalty cost will be

Pr{Z„ =  y} =  t  P ,{N (i) =  =  f ;  t ü !  ( " )  ( '  7 *  "  * )
n=0 k=0 x y x

with the convention that (£) =  0 for A: >  n.

Characteristic Functions

The pgf is useful only for discrete penalty cost distributions. For continuous 

distributions, the characteristic function (cf) exhibits analogous properties. The 

characteristic function of the continuous random variable X  is defined as

# x M  =  E{exp(jw X)}

=  E{cos w X} +  jE {s in X }

/ OO

f x (x) exp( j u X) dx

-oo

where j  is the imaginary unit V —Ï .  Let Le the common characteristic

function of the penalty cost random variables X& Then

^ z(w ) =  E N (t) {E x {exp (j'wZ) | N (t )}  }

with

Ex{exp(y wZ) | N (t) =  n } =  Ex{exp[yw(Xi +  X 2 +  h X n)|N (t) =  n]}

=  [ * x n r -

Thus
^z(w) =  EN(t){[^x(w)l }

OO

=  5 3 P r { N ( t )  =
fc=0

=  ^N(t)[^x(w)]
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where 00
f y \ | ( t ) ( 5 )  =  l ] P r { N ( f )  =  k } s k .

k=0

Lattice Penalty-Cost Distribution

When the penalty cost values form a lattice (discrete, equidistant values), 

the required numerical computations can be expressed by means of a recurrence 

formula. The formula can be derived by means of techniques[ADEL66, B ear.84] 

developed in operations research.

In a lattice distribution, all possible penalty-cost values would be expressed 

as multiples of the base unit xi:

Xj — , i — 1 ,2 , . . . ,  s.

Let {%} be the pmf for penalty cost X. The value % gives the probability that the 

aggregate penalty cost will have the multiplier i :

qi =  P r{X  =  z'}

This pmf is assumed to satisfy

qs >  0

and

Çi — 0, z s.

Instead of the Cdf F (z ,t ) ,  the pmf f {z , t )  w ill be employed:

00

f (z , t )  =  ]T ]P r{N (t)  =  n}q2* for x =  0 ,1 ,2 ,. . .
R=0

The convolution can be expressed as

qxk* =  P r{X i +  X 2 +  • • ■ +  Xfc — x},
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giving rise to the recurrence

f {z , t )  =  ( iXt /z)qi f [z - i , t )
min(z,s)

with basis

/(0 , t) =  exp(—At).

From the pdf, the CDF can be computed as

l2J

1/

Penalty Cost Vectors
So far, penalty cost has been reckoned as a scalar quantity. A generalization 

is to allow each penalty cost to form a finite-dimensional random vector X t of 

real numbers. Penalty cost vectors would be used when the penalty costs contain 

multiple inconvertible parts— when associating a single, monolithic penalty cost 

value with a software failure would result in “mixing apples and oranges.” That 

way, for example, one need not have to assign loss of life or limb an equivalent 

monetary value. The aggregate penalty cost would be defined by the vector sum of 

all penalty costs arising in [0, t):

N (t) ^

Z(£) =  ^ 2  X,-,
t=0

where Xq =  0. The basic vector operations for random vectors are precisely those 

for m-tuples of real numbers. I f  the random vector v is the m-tuple (v i, v%,. . . ,  vm) 

and the random vector w is the m-tuple (w i, W2 , . . . ,  wm), then the sum v +  w is 

the random vector defined by

V  +  W  =  (vi +  W i , V 2 + W 2, . . . , V m  +  W m ) .
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The s-expected value of the aggregate penalty is E{X}A£, where

E {X } =  (E {X i } ,E { X 2}, E {X m}),

the vector of s-expected values. (Here X, is the zth component of the vector X , not 

the penalty cost of the zth failure.
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C H A PTER  6 

A REAL LIFE EXAM PLE

The kind of data required to demonstrate the modeling technique was hard 

to come by: Since the technique has only now come into existence, no one knew to 

collect the data. The software reliability databases at the Rome Air Development 

Center did not have the right type of data, nor did other major reliability research 

centers. Fortunately it was discovered that the IB M  Corporation did have a 

collection of usable data that they were kind enough to make available.

The project from which the data came is NASA’s space shuttle. Some back

ground: The reusable Space Shuttle Transportation System is the product of a 

cost-benefit approach to space operations, now that the U.S. has been freed from 

the expensive urgency of the moon race. The shuttle’s long-range function is to serve 

as a transport for defense experimentation and provide a workshop for development 

of manufacturing and large-scale commercial operations in space. For example, the 

shuttle can rendezvous with satellites to service them or bring them back to earth. 

For military purposes, the shuttle can conduct manned reconnaissance sorties and 

deploy "spy" satellites into geostationary orbits. Ultimately the shuttle, with its 

very large payload capacity, will be instrumental in construction of a permanent 

space station and similar large structures[GATL81].

The space shuttle vehicle consists of a winged orbiter, two recoverable solid- 

rocket boosters and an external fuel tank. Lift-off thrust comes from the orbiter s 

three main liquid-propellant engines plus the boosters. After two minutes the 

boosters separate, their earthward fall slowed by parachutes. After eight minutes 

the orbital main engines shut down, and the jettisoned external tank burns up as 

it re-enters the atmosphere. A short burn of its two small Orbital Maneuvering

127
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System (OMS) engines causes the spacecraft to enter orbit. When the orbiter is 

ready to return to earth, it turns around, fires its OMS engines to decelerate, and 

then glides to an airplane-like landing.

The first orbital test flight— Space Transportation System (S T S )-l— took 

place 12-14 April 1981; STS-2, 12-14 November 1981; STS-3, 22-30 March 1982; 

and STS-4, 22 June-4 July 1982. Following these four orbital test flights, op

erational flights commenced in November 1982. After 24 successful launches, the 

shuttle Columbia exploded shortly after takeoff, destroying the vehicle and its crew, 

and setting back the program for an indefinite period of time.

The software studied was developed under contract to the National Aeronau

tics and Space Administration’s Johnson Space Center (NASA/JSC) in Houston. 

The application is the shuttle’s Ground Processing System. This system, with 

over 500,000 lines of source code, is one of the largest real-time systems ever 

developed. The system receives high-speed telemetry data from the shuttle to verify 

and augment the functions performed by the on-board computers. Additionally, 

the system must respond to interactive commands from ground-based flight control 

personnel to perform trajectory and abort predictions, and to control the worldwide 

ground tracking network[SPEC84].

After validation by the developing organization, the software was forwarded 

to a separate organization for independent verification and validation (IV & V ). 

Software failures that occurred during IV & V , operational mission simulations, and 

the actual missions, were documented in a series of anomaly reports.

The anomaly reports are summarized in the tables that appear in Appendix 

C. The 38th week corresponds to the STS-3 flight itself. The last entry is from the 

STS-4 flight. Figure 33 plots the weekly test effort in hours.

Since the data is from a single project, this example does not serve to demon

strate validity of the modeling technique. Rather, the data is used to show a
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worked-out numerical example of how the technique would be employed in a real- 

world situation. The sample data was divided into two sets: the fit set (weeks 

1-38) and the check set. (the STS-4 flight). The fit set was used to determine the 

failure rate parameter of the failure-counting component of the model as well as an 

empirical penalty-cost distribution. From this information the modeling technique 

is applied to probabilistically characterize the aggregate penalty cost to be incurred 

on the STS-4 mission. The check set contains the actual failure and penalty cost 

experience on STS-4. Because of the scarcity of “critical” failures, the “critical” and 

“major” categories, distinct in the fit set, were lumped together in the prediction 

set. This convention was established by the suppliers of the data.

Failure Rate Estimation

The first thing to note about the failure data in Appendix C is that the failure 

counts are summarized on a calendar week basis. The more usual form of software 

failure data is a list of the times at which each failure occurred. But no matter: 

The Goel-Okumoto Nonhomogeneous Poisson Process (NHPP) model was specially 

designed to work well with this type of batched data. We will use the Goel-Okumoto 

formulation to predict the failure rate A for the STS-4 operational software.

The key formulas of the Goel-Okumoto NHPP model, as covered in the Survey 

of Related Research, are the mean value function and the failure rate. The mean 

value function is described by

N ( t) - JV(oo)[l -  exp (-6r)]

where jV(oo) is the expected number of faults that would be uncovered if testing 

went on forever, and 6 is a proportionality constant determining the fault discovery 

rate. The mean value function N (t)  gives the expected number of failures that 

would occur up to time t. The number of failures up to time t is the random
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function N (f). The corresponding instantaneous failure rate is

A(t) - N '{t) =  N(oo)bexp(—bt).

In order to determine A(t), we must first obtain estimates of the parameters 

iV(oo) and b. The maximum likelihood estimators for N(oo) and b were computed 

by the following reasoning:

Under the nonhomogeneous Poisson process assumption, the probability of w 

failures being observed up to time t is given by the probability mass function

Pr{AT(t) =  iu} =  exp[iV(t)].

Let . . . ,  u>i, tUt+i, be the number of failures that have been observed up to 

times . . .  .. respectively. The conditional probability that N ( t i+ i)  =  wt+1

given that N fc )  =  W{ is given by the conditional probability mass function

Pr{JV(tt+1) =  W i+i\N (ti) =  Wi}

=  ? T {N (ti+ l ) -  N {ti) =  wi+1 -  tot}

=  N(t<+l) ~  exp{[-JV(t.-+1) -  N fr ) ] } .
\ 2i+ l  — zi ) '

The joint probability mass function for the observed data pairs (£,,tot-), 

(£2 ,to2) , . . .  ,(£n,2n) is thus

L =  Pr{iV(0) =  0, N {t i)  =  tot,. . . ,  N ( tn) =  wn}

(zi ~  zi - l ) -

The estimates for iV(oo) and b will come from maximizing the likelihood function. 

It  will prove convenient to work with the logarithm of the likelihood function L:

n n
In L  =  ^ ( z t  -  z , - i )  ln[JV(£,-) -  ^  ln[(zt — — N ( tn)

i= i t=i
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where N fc )  =  iV(oo)(l -  exp(-6£i). Now the In L  function is maximized by taking 

derivatives with respect to the variables AT(oo) and b, and setting them equal to 

zero. Two equations are obtained:

N{00] =  1 -  e x p (-6 M

and

\ v™'/  ̂ exp(—fi£t) — £t_i exp( — x
-  «"i-i) -  1) -  e x p (-6 ti )-

t = l

Combining the two yields

t„ exp(-<>£„) , exp(—6£t) — t j - i  exp(—i i t - i )
1 — exp(—6f.) = ------------------- -------------- exp - K , . , )  '

This final equation can be numerically solved to furnish the value of b. Back- 

substitution into the previous equations provides iV(oo) and then A(t).

Using the software failure data in Appendix C, obtained from testing and 

the operational STS-3 mission, the maximum likelihood estimators for the Goel- 

Okumoto model parameters were computed to be

jV(oo) =  597.887

and

b =  0.20988 x 10™3.

At the beginning of STS-4, t =  2456.9 hours of testing had been completed. The 

predicted failure rate at the beginning of STS-4 was A(2456.9) «  0.075. In actuality 

the average failure rate turned out to be 0.07 (14 failures/200 hours). So one failure 

less than predicted actually occurred.

The potential penalty cost values form a lattice because they are discrete 

and equidistant. Using the empirical distribution and a severity rating of 3 for 

critical/major and 2 for minor, the aggregate penalty cost pmf and Cdf were
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computed via the lattice method. The cumulative distribution function F (z ,t )  

for the aggregate penalty cost Z (i) was obtained by the summation

LZJ

F {z ,t)  =  / ( t / , * ) ,
l/=Q

where z is the aggregate penalty cost value for which the probability is desired and 

the probability mass function f [ z , t )  is given by the exact recursion formula

m in (z,s )

f { z , t ) =  {i)it/z )q i f [ z  ~  i , t ) .
1=1

The upper limit of the penalty cost range is s (3) and the values for % are the 

percentages of the failures in the fit set that incurred the penalty cost value i.

The cumulative distribution function and probability mass function are tab

ulated and plotted in Appendix C. The predicted median aggregate penalty cost is 

seen to be about 36, while the actual value was 3 x 5  +  9 x 2  =  33.

Summary of How to Use the Modeling Technique
The failure and penalty cost data can come from operational experience or 

from te resukts of simulation runs. Such simulation would model the target com

puter, the external environment, and the demands placed on the system. Penalty 

cost assessment after a failure would take place through subjective or automated 

examination of the failure’s effects. Modeling of the external environment would 

in most cases have to be more extensive than if only failure occurrence was to 

be detected. A simulation could not, of course be expected to model all possible 

objects that could be adversely affected by a failure, so penalty cost values would 

have to be qualified as having arisen in the context of a particular simulation.

The failure t imes and penalty costs are used to statistically infer the values 

of unknown parameters in the failure-counting and penalty-cost components. The 

particular parameters will depend upon the chosen structures of those components.
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Then the cumulative distribution function for the aggregate penalty cost is obtained 

and solved by means of the appropriate numerical technique. The resulting Cdf 

can be used to find the probability mass/density function and figures of merit and 

interest such as percentiles, mean, variance, and so forth.
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CHAPTER 7 
SAMPLE SIZE DETERMINATION

Attention now turns to the design of the informative experiment. The obser

vation of software failures and penalty costs can be terminated at a preassigned time 

point (truncation) or after a preassigned number of software failures have occurred 

(censorship). The Law of Large Numbers argues that the larger the number of 

observed software failures the more closely they will tend to be representative of 

the full stochastic process ( “population”). The sample size used in determining 

the parameters of the model should be large enough so that inferences drawn from  

the sample will have no greater probability of being wrong than a pre-specified 

cap. It  is possible to develop such a sample size figure statistically. The larger the 

sample size the better, but a point of diminishing returns will be reached at which 

it will not be cost effective to go on. Accuracy and sample size analysis depends 

on a sample size large enough so that sample statistics have distributions that are 

approximated by limiting distributions.

Reporting Uncertainty
An estimate is a numerical value obtained from a sample that is assigned to 

a population parameter. Point estimates (single values) of a population parameter 

(e.g., the mean) are of little use unless accompanied by accuracy measures. A 

confidence interval is an interval computed from sample values that has a specified 

probability 1 -  a  of containing the true value of an unknown parameter. The 

confidence probability is most popularly selected to be 95%. This figure means 

that in 95% of the cases the constructed interval can be expected to include the 

true value and in 5% of the cases it can be expected not to. This represents odds

135
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of 19 to 1 of being right. The endpoints of the interval are the confidence limits I  

and u, both functions of the observations.

A general way to obtain a confidence interval for the failure rate A of a 

single program version is to employ the Central Lim it Theorem. According to 

the Theorem, the standardized sample mean

x — n

w
of a sequence of s-independent and identically distributed random variables

5C | , 5̂ 2, • • •

with E {X t}  =  /z <  oo, V a r{X i} =  tr2 <  oo, converges to the standard normal 

distribution as n —>• oo. Figure 34 shows the 95% confidence interval in this case. 

(For practical purposes when n >  30.) When n is small or <r is not known, the 

statistic is distributed according to a Student’s (-distribution with n — 1 degrees of 

freedom. Figure 35 shows the shape of a typical Student’s (-distribution. Each 

choice of the degrees of freedom u determines a distinct but similar density curve. 

This distribution is bell-shaped but flatter than the normal.

Recall that the failure rate A =  1 /M T T F  so confidence limits for the sam

ple mean (M T T F ) can be obtained and then their reciprocals taken to produce 

confidence limits for the failure rate.

For a large sample, the confidence interval for /z is

and for a small sample it is

The score Z a/ 2 is that value of z for which P r {—z <  Z  <  z} =  1 — a, where Z  is 

a standard normal random variable. Here are the values of Z a / 2  for some common
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confidence levels:

1 — a  =  99.9% = >  Z a/2 «  3.291 

1 — a =  99% = >  Z aj 2 «  2.576 

1 — a =  95% = >  Z aj 2 «  1.960 

1 — a =  90% = >  Z aj 2 ~  1.645 

1 — a =  80% ==> Z aj 2 «  1-282 

1 — a =  50% = >  Z aj 2 ~  0.674. 

The standard normal distribution is given by the Cdf

1 f 2
<&(z) =  / exp(u2/2 ) du.

V 27T J —oo

It  has mean, median and mode equal to zero, and variance equal to one.

Similarly, taj 2 is that value of t for which P r{—t <  T  <  t}  =  1 — a, where T  

is a (-distributed random variable. The Student’s (-distribution with v degrees of 

freedom is given by Cdf

r m

^ F F r ( W 2 ) ( i  +  f ) '
F (t) -  , 2 . X  ( z /+ l ) /2  d x '

(Note that the “(” here has nothing to do with time.) For neither of these two 

distributions is it possible to write down a simple closed expression for the Cdf 

for any choice of parameter values, but the Cdf’s have been computed to great 

accuracy. I t  will always be true that ta/2 >  2 a/ 2; (-confidence intervals are longer 

than their standard normal counterparts. The standard normal and Student’s (- 

distributions are ubiquitously tabulated in the appendices of statistics textbooks. 

Figure 36 compares the standard normal and Student’s (-distribution.
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Sample Size for Determining Failure Intensity

From the confidence interval formula, the tolerable error (half-width of the 

confidence interval) is
Zctl2a

£  =  ------
yjn

in the large-sample case. Solving for n gives

-Za/2<^ 2
e

the required sample size to achieve the desired error bound and confidence level. 

Since the population standard deviation o would generally not be known a priori, 

a small pilot sample could be undertaken and its sample standard deviation s used. 

Thus

- ( ¥ ) •
In the small sample case

This estimate is consistent in that the larger the sample size the closer the sample 

mean comes to the population mean. It  is unbiased in that the s-expected value of 

the estimate equals the population parameter. It  is sufficient in that it utilizes all 

occurrence information from the set of sample data. I t  is more efficient than the 

median in that it has less variability for a given sample size. Sample size depends on 

the confidence level and degree of precision that will be required for the results and 

is affected by the variability and spread of the sampled data. The greater the degree 

of confidence or precision desired, the larger must be the sample size. O f course, 

time and cost constraints must also be considered. Note that halving the error 

bound results in a four-fold increase in the required sample size. The discussion 

here has centered on data from a single program version. In  most cases the failure 

rate for a program version will be estimated using the failure rate formulation from 

an existing software reliability model. The properties of the estimators and the
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required sample sizes will vary. Some authors do discuss these issues, but this is an 

often neglected area.

Sample Size for Determining Aggregate Penalty Cost

One of the keys to the usability of the modeling technique so far presented 

is the sample size required. Assume that the time unit is chosen such that t — 

1. Assuming the homogeneous-Poisson-based distribution of software failures—  

as developed in the chapter on the failure-counting component— let the random 

variable N represent the number of software failures during this time period. Then

E {N } =  V a r{N } =  n.

The s-expected value and variance of the penalty cost incurred by the fth software 

failure are given by

E{X i} = m 

V a r{X ,} =  a2.

The aggregate penalty cost random variable

Z  =  X i  +  X g  +  • • • +  X |\|

has expected value E {Z }  =  z =  nm, and variance V ar{Z } =  n(<r2 + m 2), as derived 

previously. I t  is desired to determine the sample size required to produce a 100P%  

confidence interval of range 100/c% about the true value. Symbolically,

Pr{ ( l - ï ) z<Z< ( l + 5 ) z} =1" “
or

.  Z - z  „  kz 

\  \ /V a r {Z }  \ /V a r {Z }  j
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According to the Central Lim it Theorem, (Z — 2 ) /  \ /V a r {Z }  will be distributed as 

a standard normal variable when the sample is reasonably large. Thus

\/V a r {Z }  X 2 J 

where ) is the Cdf of the standard normal distribution When nm  is substituted 

for 2 , and n(<r2 +  m 2) for V a r{Z }, this rearranges to

At the 95% confidence level, for example, a sample size of 96 software failures would 

be sufficient to furnish a figure accurate to within ±10% . A sample size of 384 would 

provide it to within ±5% . If  an a priori estimate zq of the s-expected aggregate 

penalty cost is available, the sample size can be less than no with good results. This 

initial estimate can be thought of as arising from a Bayesian prior distribution. Let 

ze be an estimate of the s-expected aggregate penalty cost based on sampling data. 

The best estimate of the s-expected aggregate penalty cost might be put in the 

form of a weighted average

i  =  (1 — t ) z E  +  fzo , 0 <  £ <  1.

The sample sizes given previously arise in the special case where the breaking 

constant £ =  1. When the sample size n is less than no, however, £ will be less 

than unity.

It  is desired to find the values of the coefficients £ and (1 — £). If  £ is restricted 

to a value small enough to lim it random fluctuations, for example by the restriction

P r{£z — fcz <  £Z <  £z +  kz} =  P

implying
—kz Z — z kz
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By the Central Limit Theorem again, the statistic (Z — z ) j -</Var{Z} can be ap

proximated by the standard normal distribution and so

kz _
£> /V ar{Z }

where, as before, y is such that ^ { y ) - ^ { - y )  =  P . Substituting z =  mn, =  y/k  

and timin =  «o[l +  {e /™ )2] yields, after simplifying,

£ =  \ A l / nMIN-

See[HOSS83, BENJ77].
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CO NC LU SIO NS

Summary

The dissertation has discussed research into a method for incorporating pen

alty costs into software reliability models. First, related research was surveyed to 

portray the history and state of the art of software reliability modeling. Then the 

method for incorporating penalty costs was axiomatically developed from assump

tions about software failure and its concomitant penalty cost. Numerical techniques 

were presented for simplifying the required calculations, including examples. The 

paper culminates in a demonstration of the use of a model constructed along the 

lines of the method.

The main contribution of the research is the modeling method and the class 

of models the method generates. The research does not attempt to address all 

the criticisms that have been directed at the state of the art in software relability 

modeling; It  does, however, represent a significant addition to the repertoire of 

methods available in constructing software reliability models.

The dissertation presents the modeling technique in the manner that has 

become traditional for new software reliability models: theory, model construction, 

parameter estimation and a demonstration based on data from a real-world project.

The modeling method views penalty costs as a secondary stochastic process 

that feeds into a primary stochastic process. Both processes fulfill a simple set 

of postulates. The technical features of the model can be summarized by its key 

assumptions:

145
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1) Software failures are ordered, highly localized events occurring randomly in 

time.

2) The system is restarted ( “renewed”) after every software failure; conse

quently the interfailure times are mutually s-independent.

3) The probability of failure in a small interval of time is proportional to the 

length of that interval multiplied by the failure rate.

4) The failure rate is considered either constant with a gamma-distributed prior 

(producing a type of temporally homogeneous Poisson process), actually 

gamma-distributed (producing a type of Polya process) or arbitrary.

5) Penalty costs are mutually s-independent, nonnegative random variables.

6) Penalty cost amounts are s-independent of the failure-counting process.

7) The individual penalty cost distribution can be empirical or theoretical. 

Usually it falls into one of the categories for which simplified numerical 

techniques are available: lattice distribution (recurrence technique), discrete 

distribution (probability-generating function technique), continuous distri

bution (characteristic function technique), “robust” program (incomplete 

gamma function technique).

In most cases the aggregate penalty-cost cost cumulative distribution function 

and probability density/ mass function are easily computed. The distribution can 

then be plotted or tabulated; or it can be summarized through descriptive statistics 

such as moments, percentiles, etc.

Future Research Directions

Often with new types of quantitative models there is a shortage of suitable 

historical data. Since the model did not exist in the past, no one knew to col

lect the data needed for the model. Early software reliability modelers faced this 

problem. Efforts at the Rome Air Development Center and elsewhere have made
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progress in making available databases of software failure information. Unfortu

nately, while failure times have been recorded for a variety of projects, failure 

severity data is much harder to come by. So one obvious research area is in finding 

out how to increase the quantity and quality of historical failure collection and 

dissemination. An aggravating factor is the psychological and political resistance 

to “self-incrimination.”

Improvements in the modeling technique itself might come in several areas:

1) As new software reliability models appear that improve on other aspects of 

the state of the art, the technique can be applied to them.

2) Empirical studies of severity data can suggest specific penalty-cost distribu

tions for various classes of programs. This could result in a richer class of 

models and simpler calculations.

3) Penalty costs can possibly be related to static program features— if only to 

provide prior distributions for parameters.

4) Other penalty cost measures besides “aggregate penalty cost incurred over 

a future interval” could be developed that might be more informative in 

certain applications.

5) The construction of simulators that accurately model penalty cost could be 

studied, since for many applications simulation may be the only feasible way 

to acquire the historical data for parameter estimation.

Conclusion
Software reliability modeling is becoming increasingly important as comput

erized systems become bigger and more complex, and as these systems are given 

the responsibility of controlling powerful physical forces, vital biological processes, 

and trustful financial accounting. Bugs in computer programs can cause adverse 

effects on the well-being of individuals and their environments. A quantification of
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the undesired consequences of a software failure is termed its penalty cost. Current 

software reliability models simply count failures and are deficient in taking into 

account the penalty costs of software failures. A new technique, grounded in the 

theory of random functions, provides a way for existing and compatible future 

software reliability models to probabilistically characterize the aggregate penalty 

cost incurred over a future time interval.

The modeling technique presented here should prove helpful in specifying 

penalty-cost-based reliability goals, measuring and predicting penalty-cost-based 

reliability, and evaluating competing software development technologies.

Digital hardware is starting to take on the reliability characteristics of soft

ware, promising an even greater role for software reliability modeling techniques.
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Appendix A  

Data for Bayesian Failure Rate Updating Example

Contained in this appendix is the failure data used in the example of the 

Bayesian technique for failure rate updating. The data concerns a single program 

version (frozen code). The “D A TE ” column gives the number of days since the start 

of program testing. The “DELTA D A TE” column gives the number of days since 

the preceding date. The “P E N A LTY  COST” column gives the severity rating of 

the data and is not important for this particular application. Each row documents 

a software failure that occurred.

The example starts out with an assumed failure rate and successively revises 

the estimate as more and more historical data is revealed and taken into account.

The second table, with column headers “D A Y” and “LA M B D A ,” shows the 

running best estimate of the failure rate for each successive day. The data points 

in this table are what is plotted in Figure 22.
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Tab le  X: Raw Data for Bayesian Updating Example
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Tab le  2: Best Estimate of Failure Rate
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Appendix B 

Data for Robust Program Example

The data in this appendix is used in  the example showing the application of the 

model to a hypothetical robust program. The data concerns a program in which the 

fault causing a failure is removed once discovered. Thus each row refers to a different 

program version (unlike the data in Appendix A ). The “SECONDS” column gives 

cumulative CPU seconds (ignoring repair activity tim e). The “P E N A LTY  COST” 

column is the severity rating of the failure.

The example borrows its failure-rate formulation from  the Jelinsky-Moranda 

model. The unknown parameters axe statistically estimated via the method of 

maximum likelihood.
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T ab le  3: Raw Data for Robust Program Example
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Appendix C 

Data for Space Shuttle Example

The data in this appendix summarizes the data used in the space shuttle 

example. The “W E E K ” column gives the week of testing the row refers to. The 

“TE S T  HO URS” column tells how many hours were spent in testing during that 

week. The “C R IT IC A L  FA ILU RES,” “M A JO R  FA ILU R ES” and “M IN O R  FA IL

URES” columns give the number of software failures that fell into each severity 

class. The last row refers to the STS-4 mission itself, and so represents operational 

as opposed to test phase data. Note that, as in Appendix B , fault correction is 

taking place: The code is not frozen.

Also contained in this appendix are plots and tabulations of the aggregate 

penalty cost probability mass function and cumulative distribution function ob

tained from  application of the model. Figure 38 shows the aggregate penalty cost 

probability mass function. Figure 39 shows the aggregate penalty cost cumulative 

distribution function.
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T ab le  4: Raw Data for Space Shuttle Example
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Tab le  5: Aggregate Penalty Cost P M F
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T ab le  6: Aggregate Penalty Cost CD F
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Appendix D 

"Flow Diagrams”

Figure 39 shows a typical time-domain model. The debugging times r  are 

used to statistically infer the values of the unknown parameters in the failure 

rate form ulation. The failure rate A(t) might be a constant, a deterministic tim e- 

dependent function, or a random variable. The failure rate feeds into a stochastic 

process that probabilistically characterizes the operational interfailure times. From  

the probability distribution of tim es-to-failure a number of useful figures of m erit 

such as M T T F  and percentiles are derived.

Figue 40 show the same typical time-domain model augmented by penalty 

costs. The penalty cost values x are used to estimate the parameters of an under

lying individual penalty cost distribution. The original stochastic process and the 

penalty cost distribution are combined to create a compound stochastic process. 

From the resulting aggregate penalty cost distribution, figures of m erit such as 

mean aggregate penalty cost and percentiles are derived.
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